Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies

Yuri I. Ingster; Irina A. Suslina

ESAIM: Probability and Statistics (2000)

  • Volume: 4, page 53-135
  • ISSN: 1292-8100

How to cite

top

Ingster, Yuri I., and Suslina, Irina A.. "Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies." ESAIM: Probability and Statistics 4 (2000): 53-135. <http://eudml.org/doc/104267>.

@article{Ingster2000,
author = {Ingster, Yuri I., Suslina, Irina A.},
journal = {ESAIM: Probability and Statistics},
keywords = {asymptotics of error probabilities},
language = {eng},
pages = {53-135},
publisher = {EDP Sciences},
title = {Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies},
url = {http://eudml.org/doc/104267},
volume = {4},
year = {2000},
}

TY - JOUR
AU - Ingster, Yuri I.
AU - Suslina, Irina A.
TI - Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies
JO - ESAIM: Probability and Statistics
PY - 2000
PB - EDP Sciences
VL - 4
SP - 53
EP - 135
LA - eng
KW - asymptotics of error probabilities
UR - http://eudml.org/doc/104267
ER -

References

top
  1. [1] M.V. Burnashev, On the minimax detection of an inaccurately known signal in a Gaussian noise background. Theory Probab. Appl. 24 ( 1979) 107-119. Zbl0433.60043MR522240
  2. [2] A. Cohen, I. Daubechies, B. Jewerth and P. Vial, Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris (A) 316 ( 1993) 417-421. Zbl0768.42015MR1209259
  3. [3] A. Cohen, I. Daubechies and P. Vial, Wavelets on an interval and fast wavelet transforms. Appl. Comput. Harmon. Anal 1 ( 1993) 54-81. Zbl0795.42018MR1256527
  4. [4] D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Technical Report 402 Dep. of Statistics, Stanford University ( 1992). Zbl0935.62041
  5. [5] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. 57 ( 1995) 301-369. Zbl0827.62035MR1323344
  6. [6] M.S. Ermakov, Minimax detection of a signal in a Gaussian white noise. Theory Probab. Appl. 35 ( 1990) 667-679. Zbl0744.62117MR1090496
  7. [7] I.A. Ibragimov and R.Z. Khasminskii, One problem of statistical estimation in a white Gaussian noise. Soviet Math. Dokl. 236 ( 1977) 1351-1354. Zbl0389.62024
  8. [8] I.A. Ibragimov and R.Z. Khasminskii, Statistical Estimation: Asymptotic Theory. Springer, Berlin-New York ( 1981). Zbl0467.62026MR620321
  9. [9] Yu.I. Ingster, Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission 18 ( 1982) 130-140. Zbl0499.94002MR689340
  10. [10] Yu.I. Ingster, Minimax testing of nonparametric hypotheses on a distribution density in Lp-metrics. Theory Probab. Appl. 31 ( 1986) 333-337. Zbl0629.62049
  11. [11] Yu.I. Ingster, Minimax detection of a signals in lp-metrics. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 184 ( 1990) 152-168 [in Russian, Transl: J. Soviet. Math. 68 ( 1994) 4]. Zbl0738.94005MR1098696
  12. [12] Yu.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III. Math. Methods Statist. 2 ( 1993) 85-114, 171-189, 249-268. Zbl0798.62059MR1257978
  13. [13] Yu.I. Ingster, Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 ( 1996) 162-188 (in Russian). Zbl0935.62054MR1449855
  14. [14] Yu.I. Ingster, Some problems of hypothesis testing leading to infinitely divisible distributions. Math. Methods Statist. 6 ( 1997) 47-69. Zbl0878.62005MR1456646
  15. [15] Yu.I. Ingster, Adaptation in Minimax Nonparametric Hypothesis Testing for ellipsoids and Besov bodies. Technical Report 419, Weierstrass Institute, Berlin ( 1998). 
  16. [16] Yu.I. Ingster and I.A. Suslina, Minimax signal detection for Besov balls and bodies. Problems Inform. Transmission 34 ( 1998) 56-68. Zbl1113.94303MR1654822
  17. [17] O.V. Lepski, On asymptotical exact testing of nonparametric hypotheses. CORE D.P. 9329, Université Catholique de Louvain ( 1993). 
  18. [18] O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to ingomogeneous smoothness: An approach based on kernal estimates with variable bandwidth selectors. Ann. Statist. 25 ( 1997) 929-947. Zbl0885.62044MR1447734
  19. [19] O.V. Lepski and V.G. Spokoiny, Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative. Bernoulli 5 ( 1999) 333-358. Zbl0946.62050MR1681702
  20. [20] O.V. Lepski and A.B. Tsybakov, Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Discussion Paper 91, Humboldt-Univ., Berlin. Probab. Theory Related Fields (to be published). Zbl0971.62022
  21. [21] Y. Meyer, Ondlettes. Herrmann, Paris ( 1990). 
  22. [22] M.S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16 ( 1980) 120-133. Zbl0452.94003MR624591
  23. [23] M. Sion, On general minimax theorems. Pacific J. Math. 58 ( 1958) 171-176. Zbl0081.11502MR97026
  24. [24] V.G. Spokoiny, Adaptive hypothesis testing using wavelets. Ann. Stat. 24 ( 1996) 2477-2498. Zbl0898.62056MR1425962
  25. [25] V.G. Spokoiny, Adaptive and spatially adaptive testing of nonparametric hypothesis. Math. Methods Statist. 7 ( 1998) 245-273. Zbl1103.62345MR1651777
  26. [26] I.A. Suslina, Minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 207 ( 1993) 127-137 (in Russian). Zbl0819.94014
  27. [27] I.A. Suslina, Extreme problems arising in minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 ( 1996312-332 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.