Statistical tools for discovering pseudo-periodicities in biological sequences
Bernard Prum; Élisabeth de Turckheim; Martin Vingron
ESAIM: Probability and Statistics (2001)
- Volume: 5, page 171-181
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Argos, Evidence for a repeating domain in type I restriction enzyme. European Molecular Biology Organization J. 4 (1985) 1351-1355.
- [2] G. Benson and M.S. Waterman, A method for fast data search for all k-nucleotide repeats. Nucleic Acids Res. 20 (1994) 2019-2022.
- [3] M.S.M. Boguski, R.C. Hardison, S. Schwart and W. Miller, Analysis of conserved domains and sequence motifs in cellular regulatory proteins and locus control using new software tools for multiple alignments and visualization. The New Biologist 4 (1992) 247-260.
- [4] G.M. Bressan, P. Argos and K.K. Stanley, Repeating structure of chick tropoelastin revealed by complementary DNA cloning. Biochemistry 26 (1987) 1497-1503.
- [5] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods. Springer-Verlag (1987). Zbl0604.62083MR868859
- [6] R.S. Brown, C. Sander and P. Argos, The primary structure of transcription factor TF III A has 12 consecutive repeats. Federation of European Biochemical Society Letter 186 (1985) 271-274.
- [7] J.L. Cornette, K.B. Cease, H. Margalit, J.L. Sponge, J.A. Berzofsky and Ch. DeLisi, Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Molecular Biology 195 (1987) 659-685.
- [8] E. Coward, Detecting periodicity pattern in biological sequences. Bioinformatics 14-6 (1998) 498-507.
- [9] M.O. Dayhoff, R. Schwartz and B.C. Orcutt, A model of evolutionary change in protein, edited by M.O. Dayhoff. National Biomedical Research Foundation, Washington D.C., Atlas of Protein Sequences and Structure 5-3 (1978) 345-352.
- [10] P. Doukhan, Mixing, properties and examples. Springer Verlag, Lecture Notes in Statist. 85 (1985). Zbl0801.60027MR1312160
- [11] V.A. Fischetti, G.M. Landau and P.H. Seller, Identifying period occurences of a template with application to protein structure. Inform. Process. Lett. 45-1 (1993) 11-18. Zbl0764.92011MR1207009
- [12] W. Fitch, Phylogenies constrained by cross-over process as illustrated by human hemoglobins an a thirteen-cycle, eleven amino-acid repeat in human apolipoprotein AI. Genetics 86 (1977) 623-644.
- [13] S. Hennikoff and J.G. Henikoff, Amino acid substitution matrices from protein blocks for database research. Nucleid Acid Res. 19 (1992) 6565-6572.
- [14] J. Heringa and P. Argos, A method to recognize distant repeats in protein sequences. Proteins 17-4 (1993) 391-441.
- [15] I.A. Ibragimov, On a central limit theorem for dependent random variables. Theory Probab. Appl.15 (1975).
- [16] S. Labeit, M. Gautel, A. Lakey and J. Trinick, Towards a molecular understanding of titin. European Molecular Biology Organization J. 11 (1992) 1711-1716.
- [17] A. Lupas, M. van Dyke and J. Stock, Predicting coiled coils from protein sequences. Science 252 (1991) 1162-1164.
- [18] A.D. McLachlan, Analysis of periodic patterns in amino-acid sequences: Collagen. Biopolymers 16 (1977) 1271-1297.
- [19] A.D. McLachlan, Repeated helical patterns in apolipoprotein AI. Nature 267 (1977) 465-466.
- [20] A.D. McLachlan and J. Karn, Periodic features in the amino-acid sequence of nematod myosin rod. J. Molecular Biology 220 (1983) 79-88.
- [21] A.D. McLachlan and M. Stewart, The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J. Molecular Biology 103 (1976) 271-298.
- [22] A.D. McLachlan, M. Stewart, R.O. Hynes and D.J. Rees, Analysis of repeated motifs in talin rod. J. Molecular Biology 235-4 (1994) 1278-1290.
- [23] J. Miller, A.D. McLachlan and A. Klug, Repetitive zinc-binding domains in the transcription factor IIIA from Xenopus oocytes. European Molecular Biology Organization J. 4 (1985) 1609-1614.
- [24] R.J. Serfling, Approximation Theorems of mathematical statistics. Wiley (1980). Zbl0538.62002MR595165