A Freĭman-type theorem for locally compact abelian groups
Tom Sanders[1]
- [1] University of Cambridge Department of Pure Mathematics and Mathematical Statistics Wilberforce Road Cambridge CB3 0WA (England)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 4, page 1321-1335
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Birkhoff, A note on topological groups, Compositio Math. 3 (1936), 427-430 Zbl0015.00702MR1556955
- J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968-984 Zbl0959.11004MR1726234
- M.-C. Chang, A polynomial bound in Freĭman’s theorem, Duke Math. J. 113 (2002), 399-419 Zbl1035.11048MR1909605
- B. J. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2005), 340-376 Zbl1160.11314MR2153903
- B. J. Green, I. Z. Ruzsa, Freĭman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc. (2) 75 (2007), 163-175 Zbl1133.11058MR2302736
- B. J. Green, Tom Sanders, A quantitative version of the idempotent theorem in harmonic analysis, Ann. of Math. (2) 168 (2008), 1025-1054 Zbl1170.43003MR2456890
- I. Z. Ruzsa, An analog of Freiman’s theorem in groups, Astérisque (1999), xv, 323-326 Zbl0946.11007MR1701207
- T. Sanders, Three term arithmetic progressions and sumsets, (2007) Zbl1221.11029
- Tomasz Schoen, The cardinality of restricted sumsets, J. Number Theory 96 (2002), 48-54 Zbl1043.11010MR1931192
- I. D. Shkredov, On a generalization of Szemerédi’s theorem, Proc. London Math. Soc. (3) 93 (2006), 723-760 Zbl1194.11024MR2266965
- I. D. Shkredov, On sets with small doubling, (2007) Zbl1219.11019MR2492806
- T. C. Tao, V. H. Vu, Additive combinatorics, 105 (2006), Cambridge University Press, Cambridge Zbl1127.11002MR2289012