Penultimate approximation for the distribution of the excesses
ESAIM: Probability and Statistics (2010)
- Volume: 6, page 21-31
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topWorms, Rym. "Penultimate approximation for the distribution of the excesses." ESAIM: Probability and Statistics 6 (2010): 21-31. <http://eudml.org/doc/104290>.
@article{Worms2010,
abstract = {
Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution $\{ H_\{\gamma\} \}$; it is well-known that Fu(x), where Fu is the d.f of the excesses over u, converges, when u tends to s+(F), the end-point of F, to $G_\{\gamma\}(\frac\{x\}\{\sigma(u)\})$, where $G_\{\gamma\}$ is the d.f. of the Generalized Pareto Distribution.
We provide conditions that ensure that there exists, for $\gamma >-1$, a function Λ which verifies $\lim_\{u \rightarrow s_+(F)\} \Lambda (u) =\gamma$ and is such that
$\Delta(u)= \sup_\{x \in [0,s_+(F)-u[\} |\bar\{F\}_u(x) - \bar\{G\}_\{\Lambda(u)\} (x/ \sigma(u))| $
converges to 0 faster than
$d(u)=\sup_\{x \in [0,s_+(F)-u[\} |\bar\{F\}_u(x) - \bar\{G\}_\{\gamma\}(x/ \sigma(u))|$.
},
author = {Worms, Rym},
journal = {ESAIM: Probability and Statistics},
keywords = {Generalized Pareto Distribution; excesses; penultimate approximation; rate of convergence.; generalized Pareto distribution; rate of convergence},
language = {eng},
month = {3},
pages = {21-31},
publisher = {EDP Sciences},
title = {Penultimate approximation for the distribution of the excesses},
url = {http://eudml.org/doc/104290},
volume = {6},
year = {2010},
}
TY - JOUR
AU - Worms, Rym
TI - Penultimate approximation for the distribution of the excesses
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 21
EP - 31
AB -
Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution ${ H_{\gamma} }$; it is well-known that Fu(x), where Fu is the d.f of the excesses over u, converges, when u tends to s+(F), the end-point of F, to $G_{\gamma}(\frac{x}{\sigma(u)})$, where $G_{\gamma}$ is the d.f. of the Generalized Pareto Distribution.
We provide conditions that ensure that there exists, for $\gamma >-1$, a function Λ which verifies $\lim_{u \rightarrow s_+(F)} \Lambda (u) =\gamma$ and is such that
$\Delta(u)= \sup_{x \in [0,s_+(F)-u[} |\bar{F}_u(x) - \bar{G}_{\Lambda(u)} (x/ \sigma(u))| $
converges to 0 faster than
$d(u)=\sup_{x \in [0,s_+(F)-u[} |\bar{F}_u(x) - \bar{G}_{\gamma}(x/ \sigma(u))|$.
LA - eng
KW - Generalized Pareto Distribution; excesses; penultimate approximation; rate of convergence.; generalized Pareto distribution; rate of convergence
UR - http://eudml.org/doc/104290
ER -
References
top- A. Balkema and L. de Haan, Residual life time at great age. Ann. Probab.2 (1974) 792-801.
- C.M. Goldie, N.H. Bingham and J.L. Teugels, Regular variation. Cambridge University Press (1987).
- J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob.14 (1982) 833-854.
- R.A. Fisher and L.H.C. Tippet, Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc.24 (1928) 180-190.
- M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math.36 (1984) 71-85.
- I. Gomes and L. de Haan, Approximation by penultimate extreme value distributions. Extremes2 (2000) 71-85.
- M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477.
- J. Pickands III, Statistical inference using extreme order statistics. Ann. Stat.3 (1975) 119-131.
- J.-P. Raoult and R. Worms, Rate of convergence for the Generalized Pareto approximation of the excesses (submitted).
- R. Worms, Vitesse de convergence de l'approximation de Pareto Généralisée de la loi des excès. Preprint Université de Marne-la-Vallée (10/2000).
- R. Worms, Vitesses de convergence pour l'approximation des queues de distributions Ph.D. Thesis Université de Marne-la-Vallée (2000).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.