The law of the iterated logarithm for the multivariate kernel mode estimator

Abdelkader Mokkadem; Mariane Pelletier

ESAIM: Probability and Statistics (2010)

  • Volume: 7, page 1-21
  • ISSN: 1292-8100

Abstract

top
Let θ be the mode of a probability density and θn its kernel estimator. In the case θ is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for θn - θ. Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence θn - θ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the lp norms, p ∈ [1,∞], of θn - θ. Finally, we consider the case θ is degenerate and give the exact weak and strong convergence rate of θn - θ in the univariate framework.

How to cite

top

Mokkadem, Abdelkader, and Pelletier, Mariane. "The law of the iterated logarithm for the multivariate kernel mode estimator." ESAIM: Probability and Statistics 7 (2010): 1-21. <http://eudml.org/doc/104303>.

@article{Mokkadem2010,
abstract = { Let θ be the mode of a probability density and θn its kernel estimator. In the case θ is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for θn - θ. Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence θn - θ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the lp norms, p ∈ [1,∞], of θn - θ. Finally, we consider the case θ is degenerate and give the exact weak and strong convergence rate of θn - θ in the univariate framework. },
author = {Mokkadem, Abdelkader, Pelletier, Mariane},
journal = {ESAIM: Probability and Statistics},
keywords = {Density; mode; kernel estimator; central limit theorem; law of the iterated logarithm.; density; law of the iterated logarithm},
language = {eng},
month = {3},
pages = {1-21},
publisher = {EDP Sciences},
title = {The law of the iterated logarithm for the multivariate kernel mode estimator},
url = {http://eudml.org/doc/104303},
volume = {7},
year = {2010},
}

TY - JOUR
AU - Mokkadem, Abdelkader
AU - Pelletier, Mariane
TI - The law of the iterated logarithm for the multivariate kernel mode estimator
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 1
EP - 21
AB - Let θ be the mode of a probability density and θn its kernel estimator. In the case θ is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for θn - θ. Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence θn - θ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the lp norms, p ∈ [1,∞], of θn - θ. Finally, we consider the case θ is degenerate and give the exact weak and strong convergence rate of θn - θ in the univariate framework.
LA - eng
KW - Density; mode; kernel estimator; central limit theorem; law of the iterated logarithm.; density; law of the iterated logarithm
UR - http://eudml.org/doc/104303
ER -

References

top
  1. M.A. Arcones, The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab.2 (1997) 1-39.  
  2. A. Berlinet, A. Gannoun and E. Matzner-Loeber, Normalité asymptotique d'estimateurs convergents du mode conditionnel. Can. J. Statist.26 (1998) 365-380.  
  3. H. Chernoff, Estimation of the mode. Ann. Inst. Stat. Math.16 (1964) 31-41.  
  4. G. Collomb, W. Härdle and S. Hassani, A note on prediction via estimation of the conditional mode function. J. Statist. Planning Inference15 (1987) 227-236.  
  5. W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist.8 (1980) 870-882.  
  6. W.F. Eddy, The asymptotic distributions of kernel estimators of the mode. Z. Warsch. Verw. Geb.59 (1982) 279-290.  
  7. U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type functions estimators. J. Theoret. Probab.13 (2000) 1-37.  
  8. E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators, Preprint. Paris VI (2000).  
  9. U. Grenander, Some direct estimates of the mode. Ann. Math. Statist.36 (1965) 131-138.  
  10. B. Grund and P. Hall, On the minimisation of Lp error in mode estimation. Ann. Statist.23 (1995) 2264-2284.  
  11. P. Hall, Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Geb.56 (1981) 47-61.  
  12. P. Hall, Asymptotic theory of Grenander's mode estimator. Z. Warsch. Verw. Geb.60 (1982) 315-334.  
  13. V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl.18 (1973) 836-842.  
  14. J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 637-640.  
  15. D. Louani and E. Ould-Said, Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. J. Nonparametr. Statist.11 (1999) 413-442.  
  16. A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted).  
  17. E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl.10 (1965) 186-190.  
  18. E. Ould-Said, A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat.24 (1997) 231-239.  
  19. E. Parzen, On estimating probability density function and mode. Ann. Math. Statist.33 (1962) 1065-1076.  
  20. D. Pollard, Convergence of Stochastic Processes. Springer, New York (1984).  
  21. A. Quintela-Del-Rio and P. Vieu, A nonparametric conditional mode estimate. J. Nonparametr. Statist.8 (1997) 253-266.  
  22. J. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist.16 (1988) 629-647.  
  23. L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode. Sankhya Ser. A39 (1977) 243-250.  
  24. T.W. Sager, Consistency in nonparametric estimation of the mode. Ann. Statist.3 (1975) 698-706.  
  25. M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J.7 (1973) 109-117.  
  26. M. Samanta and A. Thavaneswaran, Nonparametric estimation of the conditional mode. Commun Stat., Theory Methods19 (1990) 4515-4524.  
  27. A.B. Tsybakov, Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission26 (1990) 31-37.  
  28. J. Van Ryzin, On strong consistency of density estimates. Ann. Math. Statist.40 (1969) 1765-1772.  
  29. J.H. Venter, On estimation of the mode. Ann. Math. Statist.38 (1967) 1446-1455.  
  30. P. Vieu, A note on density mode estimation. Statist. Probab. Lett.26 (1996) 297-307.  
  31. H. Yamato, Sequential estimation of a continuous probability density function and the mode. Bull. Math. Statist.14 (1971) 1-12.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.