The law of the iterated logarithm for the multivariate kernel mode estimator
Abdelkader Mokkadem; Mariane Pelletier
ESAIM: Probability and Statistics (2010)
- Volume: 7, page 1-21
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topMokkadem, Abdelkader, and Pelletier, Mariane. "The law of the iterated logarithm for the multivariate kernel mode estimator." ESAIM: Probability and Statistics 7 (2010): 1-21. <http://eudml.org/doc/104303>.
@article{Mokkadem2010,
abstract = {
Let θ be the mode of a probability density and θn its
kernel estimator. In the case θ is nondegenerate, we first
specify the weak
convergence rate of the multivariate kernel mode estimator by stating
the central limit
theorem for θn - θ. Then, we obtain a multivariate law of
the iterated logarithm for the kernel mode estimator by proving that,
with probability
one, the limit set of the sequence θn - θ suitably
normalized is an ellipsoid.
We also give a law of the iterated logarithm for the lp norms,
p ∈ [1,∞], of
θn - θ. Finally, we consider the case θ is
degenerate and give the exact
weak and strong convergence rate of θn - θ in the
univariate framework.
},
author = {Mokkadem, Abdelkader, Pelletier, Mariane},
journal = {ESAIM: Probability and Statistics},
keywords = {Density; mode; kernel estimator; central limit theorem; law
of the iterated logarithm.; density; law of the iterated logarithm},
language = {eng},
month = {3},
pages = {1-21},
publisher = {EDP Sciences},
title = {The law of the iterated logarithm for the multivariate kernel mode estimator},
url = {http://eudml.org/doc/104303},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Mokkadem, Abdelkader
AU - Pelletier, Mariane
TI - The law of the iterated logarithm for the multivariate kernel mode estimator
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 1
EP - 21
AB -
Let θ be the mode of a probability density and θn its
kernel estimator. In the case θ is nondegenerate, we first
specify the weak
convergence rate of the multivariate kernel mode estimator by stating
the central limit
theorem for θn - θ. Then, we obtain a multivariate law of
the iterated logarithm for the kernel mode estimator by proving that,
with probability
one, the limit set of the sequence θn - θ suitably
normalized is an ellipsoid.
We also give a law of the iterated logarithm for the lp norms,
p ∈ [1,∞], of
θn - θ. Finally, we consider the case θ is
degenerate and give the exact
weak and strong convergence rate of θn - θ in the
univariate framework.
LA - eng
KW - Density; mode; kernel estimator; central limit theorem; law
of the iterated logarithm.; density; law of the iterated logarithm
UR - http://eudml.org/doc/104303
ER -
References
top- M.A. Arcones, The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab.2 (1997) 1-39.
- A. Berlinet, A. Gannoun and E. Matzner-Loeber, Normalité asymptotique d'estimateurs convergents du mode conditionnel. Can. J. Statist.26 (1998) 365-380.
- H. Chernoff, Estimation of the mode. Ann. Inst. Stat. Math.16 (1964) 31-41.
- G. Collomb, W. Härdle and S. Hassani, A note on prediction via estimation of the conditional mode function. J. Statist. Planning Inference15 (1987) 227-236.
- W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist.8 (1980) 870-882.
- W.F. Eddy, The asymptotic distributions of kernel estimators of the mode. Z. Warsch. Verw. Geb.59 (1982) 279-290.
- U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type functions estimators. J. Theoret. Probab.13 (2000) 1-37.
- E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators, Preprint. Paris VI (2000).
- U. Grenander, Some direct estimates of the mode. Ann. Math. Statist.36 (1965) 131-138.
- B. Grund and P. Hall, On the minimisation of Lp error in mode estimation. Ann. Statist.23 (1995) 2264-2284.
- P. Hall, Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Geb.56 (1981) 47-61.
- P. Hall, Asymptotic theory of Grenander's mode estimator. Z. Warsch. Verw. Geb.60 (1982) 315-334.
- V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl.18 (1973) 836-842.
- J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 637-640.
- D. Louani and E. Ould-Said, Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. J. Nonparametr. Statist.11 (1999) 413-442.
- A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted).
- E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl.10 (1965) 186-190.
- E. Ould-Said, A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat.24 (1997) 231-239.
- E. Parzen, On estimating probability density function and mode. Ann. Math. Statist.33 (1962) 1065-1076.
- D. Pollard, Convergence of Stochastic Processes. Springer, New York (1984).
- A. Quintela-Del-Rio and P. Vieu, A nonparametric conditional mode estimate. J. Nonparametr. Statist.8 (1997) 253-266.
- J. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist.16 (1988) 629-647.
- L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode. Sankhya Ser. A39 (1977) 243-250.
- T.W. Sager, Consistency in nonparametric estimation of the mode. Ann. Statist.3 (1975) 698-706.
- M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J.7 (1973) 109-117.
- M. Samanta and A. Thavaneswaran, Nonparametric estimation of the conditional mode. Commun Stat., Theory Methods19 (1990) 4515-4524.
- A.B. Tsybakov, Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission26 (1990) 31-37.
- J. Van Ryzin, On strong consistency of density estimates. Ann. Math. Statist.40 (1969) 1765-1772.
- J.H. Venter, On estimation of the mode. Ann. Math. Statist.38 (1967) 1446-1455.
- P. Vieu, A note on density mode estimation. Statist. Probab. Lett.26 (1996) 297-307.
- H. Yamato, Sequential estimation of a continuous probability density function and the mode. Bull. Math. Statist.14 (1971) 1-12.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.