Moderate Deviations for I.I.D. Random Variables
Peter Eichelsbacher; Matthias Löwe
ESAIM: Probability and Statistics (2010)
- Volume: 7, page 209-218
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. de Acosta, Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Amer. Math. Soc.329 (1992) 357-375.
- M.A. Arcones, The large deviation principle for empirical processes. Preprint (1999).
- M. van den Berg, E. Bolthausen and F. den Hollander, Moderate deviations for the volume of the Wiener sausage. Ann. Math.153 (2001) 355-406.
- H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, Actualités Scientifique et Industrielles (736 Colloque consacré à la théorie des probabilités). Hermann (1938) 5-23.
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (1998).
- M. Djellout, Moderate deviations for martingale differences and applications to Φ-mixing sequences. Stochastics and Stochastic Reports (to appear).
- P. Eichelsbacher and U. Schmock, Rank-dependent moderate deviations for U-empirical measures in strong topologies(submitted).
- E. Giné and V. de la Pe na, Decoupling: From dependence to independence. Springer-Verlag (1999).
- M. Ledoux, Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré28 (1992) 267-280.
- M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin (1991).
- M. Löwe and F. Merkl, Moderate deviations for longest increasing subsequences: The upper tail. Comm. Pure Appl. Math.54 (2001) 1488-1520.