Replicant compression coding in Besov spaces
Gérard Kerkyacharian; Dominique Picard
ESAIM: Probability and Statistics (2010)
- Volume: 7, page 239-250
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topKerkyacharian, Gérard, and Picard, Dominique. "Replicant compression coding in Besov spaces." ESAIM: Probability and Statistics 7 (2010): 239-250. <http://eudml.org/doc/104306>.
@article{Kerkyacharian2010,
abstract = {
We present here a new proof of the theorem of
Birman and Solomyak on the metric entropy of the unit ball of a
Besov space $B^s_\{\pi,q\}$ on a regular domain of $\{\mathbb R\}^d.$ The
result is: if s - d(1/π - 1/p)+> 0, then the Kolmogorov metric
entropy satisfies H(ε) ~ ε-d/s. This proof
takes advantage of the representation of such spaces on wavelet type
bases and extends the result to more general spaces. The lower bound
is a consequence of very simple probabilistic exponential
inequalities. To prove the upper bound, we provide a new
universal coding based on a thresholding-quantizing procedure using
replication.
},
author = {Kerkyacharian, Gérard, Picard, Dominique},
journal = {ESAIM: Probability and Statistics},
keywords = {Entropy; coding; Besov
spaces; wavelet bases; replication.; entropy; Besov spaces; replication},
language = {eng},
month = {3},
pages = {239-250},
publisher = {EDP Sciences},
title = {Replicant compression coding in Besov spaces},
url = {http://eudml.org/doc/104306},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Kerkyacharian, Gérard
AU - Picard, Dominique
TI - Replicant compression coding in Besov spaces
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 239
EP - 250
AB -
We present here a new proof of the theorem of
Birman and Solomyak on the metric entropy of the unit ball of a
Besov space $B^s_{\pi,q}$ on a regular domain of ${\mathbb R}^d.$ The
result is: if s - d(1/π - 1/p)+> 0, then the Kolmogorov metric
entropy satisfies H(ε) ~ ε-d/s. This proof
takes advantage of the representation of such spaces on wavelet type
bases and extends the result to more general spaces. The lower bound
is a consequence of very simple probabilistic exponential
inequalities. To prove the upper bound, we provide a new
universal coding based on a thresholding-quantizing procedure using
replication.
LA - eng
KW - Entropy; coding; Besov
spaces; wavelet bases; replication.; entropy; Besov spaces; replication
UR - http://eudml.org/doc/104306
ER -
References
top- P. Assouad, Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I Math.296 (1983) 1021-1024. Zbl0568.62003
- L. Birgé, Sur un théorème de minimax et son application aux tests. Probab. Math. Statist.3 (1984) 259-282. Zbl0571.62036
- L. Birgé and P. Massart, An adaptative compression algorithm in Besov spaces. Constr. Approx.16 (2000) 1-36. Zbl1004.41006
- M.S. Birman and M.Z. Solomiak, Piecewise-polynomial approximation of functions of the classes Wp. Mat. Sbornik73 (1967) 295-317.
- A. Cohen, R. DeVore and W. Dahmen, Multiscale methods on bounded domains. Trans. AMS352 (2000) 3651-3685. Zbl0945.42018
- A. Cohen, W. Dahmen, I. Daubechies and R. DeVore, Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal.11 (2001) 192-226. Zbl0992.65151
- T.A. Cover and J.A. Thomas, Element of Information Theory. Wiley Interscience (1991). Zbl0762.94001
- B. Delyon and A. Juditski, On minimax wavelet estimators. Appl. Comput. Harmon. Anal.3 (1996) 215-228. Zbl0865.62023
- R. DeVore, R. Kyriazis and P. Wang, Multiscale characterization of Besov spaces on bounded domains. J. Approx. Theory93 (1998) 273-292. Zbl0922.46029
- R. DeVore, Nonlinear approximation. Cambridge University Press, Acta Numer. 7 (1998) 51-150. Zbl0931.65007
- R. DeVore and G. Lorentz, Constructive Approximation. Springer-Verlag, New York (1993). Zbl0797.41016
- D.L. Donoho, Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal.3 (1996) 388-392. Zbl0936.62004
- W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc.58 (1963) 13-30. Zbl0127.10602
- W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelet, Approximation and Statistical Applications. Springer Verlag, New York, Lecture Notes in Statist. 129 (1998). Zbl0899.62002
- G. Kerkyacharian and D. Picard, Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test9 (2000) 283-345. Zbl1107.62323
- G. Kerkyacharian and D. Picard, Minimax or maxisets? Bernoulli 8 (2002) 219-253. Zbl1006.62005
- G. Kerkyacharian and D. Picard, Entropy, Universal coding, Approximation and bases properties. Technical Report (2001). Zbl1055.41015
- G. Kerkyacharian and D. Picard, Density Estimation by Kernel and Wavelets methods - Optimality of Besov spaces. Statist. Probab. Lett.18 (1993) 327-336. Zbl0793.62019
- A.N. Kolmogorov and V.M. Tikhomirov, π-entropy and π-capacity. Uspekhi Mat. Nauk14 (1959) 3-86. (Engl. Translation: Amer. Math. Soc. Transl. Ser. 2 17, 277-364.)
- L. Le Cam, Convergence of estimator under dimensionality restrictions. Ann. Statist.1 (1973) 38-53. Zbl0255.62006
- L. Le Cam, Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM's 25 years. Montreal, PQ (1994) 303-311.
- G.G. Lorentz, Metric entropy and approximation. Bull. Amer. Math. Soc.72 (1966) 903-937. Zbl0158.13603
- S.M. Nikolskii, Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka (1977). English translation of the first Ed., Berlin (1975).
- V.V. Petrov, Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press (1995). Zbl0826.60001
- S.A. van de Geer, Empirical processes in M-estimation. Cambridge University Press (2000). Zbl1179.62073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.