Superposition of Diffusions with Linear Generator and its Multifractal Limit Process

Endre Iglói; György Terdik

ESAIM: Probability and Statistics (2010)

  • Volume: 7, page 23-88
  • ISSN: 1292-8100

Abstract

top
In this paper a new multifractal stochastic process called Limit of the Integrated Superposition of Diffusion processes with Linear differencial Generator (LISDLG) is presented which realistically characterizes the network traffic multifractality. Several properties of the LISDLG model are presented including long range dependence, cumulants, logarithm of the characteristic function, dilative stability, spectrum and bispectrum. The model captures higher-order statistics by the cumulants. The relevance and validation of the proposed model are demonstrated by real data of Internet traffic.


How to cite

top

Iglói, Endre, and Terdik, György. "Superposition of Diffusions with Linear Generator and its Multifractal Limit Process." ESAIM: Probability and Statistics 7 (2010): 23-88. <http://eudml.org/doc/104307>.

@article{Iglói2010,
abstract = { In this paper a new multifractal stochastic process called Limit of the Integrated Superposition of Diffusion processes with Linear differencial Generator (LISDLG) is presented which realistically characterizes the network traffic multifractality. Several properties of the LISDLG model are presented including long range dependence, cumulants, logarithm of the characteristic function, dilative stability, spectrum and bispectrum. The model captures higher-order statistics by the cumulants. The relevance and validation of the proposed model are demonstrated by real data of Internet traffic.
},
author = {Iglói, Endre, Terdik, György},
journal = {ESAIM: Probability and Statistics},
keywords = {Fractals; long range dependence; self-similarity; stationarity; higher order statistics; bispectrum; network traffic; superposition; diffusion processes; CIR process; DLG process; square root process.; fractals; higher order statistics; CIR processes; square root process},
language = {eng},
month = {3},
pages = {23-88},
publisher = {EDP Sciences},
title = {Superposition of Diffusions with Linear Generator and its Multifractal Limit Process},
url = {http://eudml.org/doc/104307},
volume = {7},
year = {2010},
}

TY - JOUR
AU - Iglói, Endre
AU - Terdik, György
TI - Superposition of Diffusions with Linear Generator and its Multifractal Limit Process
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 23
EP - 88
AB - In this paper a new multifractal stochastic process called Limit of the Integrated Superposition of Diffusion processes with Linear differencial Generator (LISDLG) is presented which realistically characterizes the network traffic multifractality. Several properties of the LISDLG model are presented including long range dependence, cumulants, logarithm of the characteristic function, dilative stability, spectrum and bispectrum. The model captures higher-order statistics by the cumulants. The relevance and validation of the proposed model are demonstrated by real data of Internet traffic.

LA - eng
KW - Fractals; long range dependence; self-similarity; stationarity; higher order statistics; bispectrum; network traffic; superposition; diffusion processes; CIR process; DLG process; square root process.; fractals; higher order statistics; CIR processes; square root process
UR - http://eudml.org/doc/104307
ER -

References

top
  1. O.E. Barndorff-Nielsen, Superposition of Ornstein-Uhlenbeck type processes, Technical Report 1999-2, MaPhySto. Aarhus University (1999), URL: http://www.maphysto.dk/cgi-bin/w3-msql/publications/.  
  2. J. Beran, Statistics for Long-Memory Processes. Chapman & Hall, Monogr. Statist. Appl. Probab. 61 (1994).  
  3. D.R. Brillinger, An introduction to polyspectra. Ann. Math. Statist.36 (1965) 1351-1374.  
  4. L. Calvet and A. Fisher, Forecasting multifractal volatility. J. Econometrics105 (2001) 27-58.  
  5. P. Carmona and L. Coutin, Fractional Brownian motion and the Markov property, Electron. Commun. Probab. 3 (1998) 95-107.  
  6. P. Carmona, L. Coutin and G. Montseny, Applications of a representation of long-memory Gaussian processes. Stochastic Process. Appl. (submitted), URL: http://www.sv.cict.fr/lsp/Carmona/prepublications.html  
  7. P. Clifford and G. Wei, The equivalence of the Cox process with squared radial Ornstein-Uhlenbeck intensity and the death process in a simple population model. Ann. Appl. Probab.3 (1993) 863-873.  
  8. D.R. Cox, Long-range dependence, non-linearity and time irreversibility. J. Time Ser. Anal.12 (1991) 329-335.  
  9. J.C. Cox, J.E. Ingersoll and S.A. Ross, A theory of the term structure of interest rates. Econometrica53 (1985) 385-407.  
  10. T. Dankel Jr., On the distribution of the integrated square of the Ornstein-Uhlenbeck process. SIAM J. Appl. Math.51 (1991) 568-574.  
  11. E.B. Dynkin, Markov Processes, Vols. 1-2. Springer-Verlag, Berlin-Göttingen-Heidelberg (1965).  
  12. W. Feller, Two singular diffusion problems. Ann. Math. (2)54 (1951) 173-182.  
  13. C. Granger, Long-memory relationship and aggregation of dynamic models. J. Econometrics14 (1980) 227-238.  
  14. R.C. Griffiths, Infinitely divisible multivariate gamma distributions. Sankhya Ser. A32 (1970) 393-404.  
  15. E. Iglói, Long-range dependent processes with real bispectrum are third order nonlinear, Technical Report 259 (2001/1). University of Debrecen, Institute of Mathematics and Informatics (2001).  
  16. E. Iglói and G. Terdik, Long-range dependence through Gamma-mixed Ornstein-Uhlenbeck process. Electron. J. Probab. (EJP)4 (1999) 1-33.  
  17. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes. North-Holland Publishing Co.,Amsterdam (1981).  
  18. S. Jaffard, The multifractal nature of Lévy processes. Probab. Theory Related Fields114 (1999) 207-227.  
  19. S. Karlin and J. McGregor, Classical diffusion processes and total positivity. J. Math. Anal. Appl.1 (1960) 163-183.  
  20. K. Kawazu and S. Watanabe, Branching processes with immigration and related limit theorems. Teor. Verojatnost. Primenen.16 (1971) 34-51.  
  21. A.N. Kolmogorov, Über die analitischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann.104 (1931) 415-458.  
  22. A.N. Kolmogorov, Wiener spiral and some other interesting curve in Hilbert space. C. R. Acad. Sci. URSS26 (1940) 115-118.  
  23. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS30 (1941) 301-305.  
  24. P.R. Krishnaiah and M.M. Rao, Remarks on a multivariate gamma distribution. Amer. Math. Monthly68 (1961) 342-346.  
  25. A.S. Krishnamoorthy and M. Parthasarathy, A multi-variate gamma-type distribution. Ann. Math. Statist.22 (1951) 549-557.  
  26. W.E. Leland, M.S. Taqqu, W. Willinger and D.W. Wilson, On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking2 (1994) 1-15.  
  27. S.B. Lowen and M.C. Teich, Fractal renewal processes generate 1/f noise. Phys. Rev. E47 (1993) 992-1001.  
  28. B.B. Mandelbrot, Long-run linearity, locally Gaussian processes, h-spectra and infinite variances. Technometrics10 (1969) 82-113.  
  29. B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev.10 (1968) 422-437.  
  30. A.P. Prudnikov, Y.A. Britshkov and O.I. Maritshev, Integrali i ryadi. Nauka, Moscow. Appl. Math. (1981), in Russian.  
  31. H.R. Riedi, S.M. Crouse, J.V. Ribeiro and G.R. Baraniuk, A multifractal wavelet model with application to network traffic. IEEE Trans. Inform. Theory45 (1999) 992-1018.  
  32. B. Ryu and S.B. Lowen, Point process models for self-similar network traffic, with applications. Comm. Statist. Stochastic Models14 (1998) 735-761.  
  33. G. Samorodnitsky and M.S. Taqqu, Linear models with long-range dependence and finite or infinite variance, edited by D. Brillinger, P. Caines, J. Geweke, E. Parzen, M. Rosenblatt and M.S. Taqqu, New Directions in Time Series Analysis, Part II. Springer-Verlag, New York, IMA Vol. Math. Appl. 46 (1992) 325-340.  
  34. T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrsch. Verw. Gebiete27 (1973) 37-46.  
  35. A.N. Shiryaev, Probability. Springer-Verlag, New York (1996).  
  36. S.E. Shreve, Steven shreve's lectures on stochastic calculus and finance, Online: www.cs.cmu.edu/chal/shreve.html  
  37. Y.G. Sinai, Self-similar probability distributions. Theor. Probab. Appl.21 (1976) 64-84.  
  38. G. Szego, Orthogonal polynomials, in Colloquium Publ., Vol. XXIII. American Math. Soc., New York (1936).  
  39. M.S. Taqqu, V. Teverovsky and W. Willinger, Is network traffic self-similar or multifractal? Fractals 5 (1997) 63-73.  
  40. G. Terdik, Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis; A Frequency Domain Approach. Springer-Verlag, New York, Lecture Notes in Statist. 142 (1999).  
  41. G. Terdik, Z. Gál, S. Molnár and E. Iglói, Bispectral analysis of traffic in high speed networks. Comput. Math. Appl.43 (2002) 1575-1583.  
  42. W. Willinger, M.S. Taqqu, R. Sherman and D.V. Wilson, Self-similarity through high variability: Statistical analysis of Ethernet LAN traffic at the source level. Comput. Commun. Rev.25 (1995) 100-113.  
  43. T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.11 (1971) 155-167.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.