Optimisation in space of measures and optimal design
ESAIM: Probability and Statistics (2010)
- Volume: 8, page 12-24
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- A.C. Atkinson and A.N. Donev, Optimum Experimental Designs. Clarendon Press, Oxford (1992).
- C.L. Atwood, Sequences converging to D-optimal designs of experiments. Ann. Statist.1 (1973) 342-352.
- C.L. Atwood, Convergent design sequences, for sufficiently regular optimality criteria. Ann. Statist.4 (1976) 1124-1138.
- D. Böhning, A vertex-exchange-method in D-optimal design theory. Metrika33 (1986) 337-347.
- R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim.21 (1990) 265-287.
- D. Cook and V. Fedorov, Constrained optimization of experimental design. Statistics26 (1995) 129-178.
- D.J. Daley and D. Vere–Jones, An Introduction to the Theory of Point Processes. Springer, New York (1988).
- N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. Wiley, New York (1988).
- V.V. Fedorov, Theory of Optimal Experiments. Academic Press, New York (1972).
- V.V. Fedorov, Optimal design with bounded density: Optimization algorithms of the exchange type. J. Statist. Plan. Inf.22 (1989) 1-13.
- V.V. Fedorov and P. Hackl, Model-Oriented Design of Experiments. Springer, New York, Lecture Notes in Statist. 125 (1997).
- I. Ford, Optimal Static and Sequential Design: A Critical Review, Ph.D. Thesis. Department of Statistics, University of Glasgow, Glasgow (1976).
- A. Gaivoronski, Linearization methods for optimization of functionals which depend on probability measures. Math. Progr. Study28 (1986) 157-181.
- N. Gaffke and R. Mathar, On a Class of Algorithms from Experimental Design Theory. Optimization24 (1992) 91-126.
- E. Hille and R.S. Phillips, Functional Analysis and Semigroups. American Mathematical Society, Providence, AMS Colloquium Publications XXXI (1957).
- J. Kiefer, General equivalence theory for optimum designs (approximate theory). Ann. Statist.2 (1974) 849-879.
- J. Kiefer and J. Wolfowitz, The equivalence of two extremal problems. Canad. J. Math.14 (1960) 363-366.
- P. Kumaravelu, L. Hook, A.M. Morrison, J. Ure, S. Zhao, S. Zuyev, J. Ansell and A. Medvinsky, Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): Role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development129 (2002) 4891-4899.
- E.P. Liski, N.K. Mandal, K.R. Shah and B.K. Singha, Topics in Optimal Design. Springer, New York, Lect. Notes Statist. 163 (2002).
- H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming16 (1979) 98-110.
- I. Molchanov and S. Zuyev, Steepest descent algorithms in space of measures. Statist. and Comput.12 (2002) 115-123.
- I. Molchanov and S. Zuyev, Tangent sets in the space of measures: With applications to variational calculus. J. Math. Anal. Appl.249 (2000) 539-552.
- I. Molchanov and S. Zuyev, Variational analysis of functionals of a Poisson process. Math. Oper. Res.25 (2000) 485-508.
- C.H. Müller and A. Pázman, Applications of necessary and sufficient conditions for maximin efficient designs. Metrika48 (1998) 1-19.
- A. Pázman, Hilbert-space methods in experimantal design. Kybernetika14 (1978) 73-84.
- E. Polak, Optimization. Algorithms and Consistent Approximations. Springer, New York (1997).
- F. Pukelsheim, Optimal Design of Experiments. Wiley, New York (1993).
- S.M. Robinson, First order conditions for general nonlinear optimization. SIAM J. Appl. Math.30 (1976) 597-607.
- S.D. Silvey, Optimum Design. Chapman & Hall, London (1980).
- D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications, Second Edition. Wiley, Chichester (1995).
- P. Whittle, Some general points in the theory of optimal experimental design. J. Roy. Statist. Soc. Ser. B35 (1973) 123-130.
- G. Winkler, Extreme points of moment sets. Math. Oper. Res.13 (1988) 581-587.
- C.-F. Wu, Some algorithmic aspects of the theory of optimal design. Ann. Statist.6 (1978) 1286-1301.
- C.-F. Wu, Some iterative procedures for generating nonsingular optimal designs. Comm. Statist. Theory Methods A7 (1978) 1399-1412.
- C.-F. Wu and H.P. Wynn, The convergence of general step-length algorithms for regular optimum design criteria. Ann. Statist.6 (1978) 1273-1285.
- H.P. Wynn, The sequential generation of D-optimum experimental designs. Ann. Math. Statist.41 (1970) 1655-1664.
- H.P. Wynn, Results in the theory and construction of D-optimum experimental designs. J. Roy. Statist. Soc. Ser. B34 (1972) 133-147.
- J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim.5 (1979) 49-62.