Generalized Induction of Kazhdan-Lusztig cells

Jérémie Guilhot[1]

  • [1] Aberdeen University Department of Mathematical Sciences King’s College Aberdeen AB24 3UE, Scotland (U.K.) Université de Lyon 1 Institut Camille Jordan, CNRS UMR 5208 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 4, page 1385-1412
  • ISSN: 0373-0956

Abstract

top
Following Lusztig, we consider a Coxeter group W together with a weight function. Geck showed that the Kazhdan-Lusztig cells of W are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of W which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of W are cells in the whole group, and we decompose the affine Weyl group of type G into left and two-sided cells for a whole class of weight functions.

How to cite

top

Guilhot, Jérémie. "Generalized Induction of Kazhdan-Lusztig cells." Annales de l’institut Fourier 59.4 (2009): 1385-1412. <http://eudml.org/doc/10432>.

@article{Guilhot2009,
abstract = {Following Lusztig, we consider a Coxeter group $W$ together with a weight function. Geck showed that the Kazhdan-Lusztig cells of $W$ are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of $W$ which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of $W$ are cells in the whole group, and we decompose the affine Weyl group of type $G$ into left and two-sided cells for a whole class of weight functions.},
affiliation = {Aberdeen University Department of Mathematical Sciences King’s College Aberdeen AB24 3UE, Scotland (U.K.) Université de Lyon 1 Institut Camille Jordan, CNRS UMR 5208 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex (France)},
author = {Guilhot, Jérémie},
journal = {Annales de l’institut Fourier},
keywords = {Coxeter groups; Affine Weyl groups; Hecke algebras; Kazhdan-Lusztig cells; Unequal parameters; affine Weyl groups; weight functions; unions of left cells; parabolic subgroups; generalized induction},
language = {eng},
number = {4},
pages = {1385-1412},
publisher = {Association des Annales de l’institut Fourier},
title = {Generalized Induction of Kazhdan-Lusztig cells},
url = {http://eudml.org/doc/10432},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Guilhot, Jérémie
TI - Generalized Induction of Kazhdan-Lusztig cells
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1385
EP - 1412
AB - Following Lusztig, we consider a Coxeter group $W$ together with a weight function. Geck showed that the Kazhdan-Lusztig cells of $W$ are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of $W$ which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of $W$ are cells in the whole group, and we decompose the affine Weyl group of type $G$ into left and two-sided cells for a whole class of weight functions.
LA - eng
KW - Coxeter groups; Affine Weyl groups; Hecke algebras; Kazhdan-Lusztig cells; Unequal parameters; affine Weyl groups; weight functions; unions of left cells; parabolic subgroups; generalized induction
UR - http://eudml.org/doc/10432
ER -

References

top
  1. R. Bedard, Cells for two Coxeter groups, Comm. Algebra 14 (1986), 1253-1286 Zbl0608.20037MR842039
  2. K. Bremke, On generalized cells in affine Weyl groups, Journal of Algebra 191 (1997), 149-173 Zbl0942.20019MR1444494
  3. C. Chen, The decomposition into left cells of the affine Weyl group of type D ˜ 4 , Journal of Algebra 163 (1994), 692-728 Zbl0799.20039MR1265858
  4. F. Du Cloux, An abstract model for Bruhat intervals, European J. Combin. 21 (2000), 197-222 Zbl0953.05083MR1742435
  5. J. Du, The decomposition into cells of the affine Weyl group of type B ˜ 3 , Comm. Algebra 16 (1988), 1383-1409 Zbl0644.20030MR941176
  6. M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), 608-614 Zbl1045.20004MR1989489
  7. J. Guilhot, On the determination of Kazhdan-Lusztig cells for affine Weyl group with unequal parameters, Journal of Algebra 318 (2007), 893-917 Zbl1146.20033MR2371977
  8. J. Guilhot, Computations in Generalized induction of Kazhdan-Lusztig cells, available at (2008) Zbl1186.20004
  9. J. Guilhot, On the lowest two-sided cell in affine Weyl groups, Represent. Theory 12 (2008), 327-345 Zbl1161.20035MR2448287
  10. D. A. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math. 36 (1980), 185-203 Zbl0461.14015MR573434
  11. G. Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Advances in Mathematics 37 (1980), 121-164 Zbl0448.20039MR591724
  12. G. Lusztig, Cells in affine Weyl groups, Advanced Studies in Pure Math. 6 (1985), 255-287 Zbl0569.20032MR803338
  13. G. Lusztig, The two-sided cells of the affine Weyl group of type A ˜ n , Math. Sci. Res. Inst. Publ 4 (1985), 275-283 Zbl0602.20037MR823323
  14. G. Lusztig, Hecke algebras with unequal parameters, 18 (2003), CRM Monographs Ser. Zbl1051.20003MR1974442
  15. Martin Schönert, GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4, (1997), Aachen, Germany 
  16. J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, 1179 (1986), Springer-Verlag Zbl0582.20030MR835214
  17. J.-Y. Shi, Left cells in affine Weyl group W a ( D ˜ 4 ) , Osaka J. Math. 31 (1994), 27-50 Zbl0816.20040MR1262787
  18. J.-Y. Shi, Left cells in affine Weyl groups, Tokohu Math. J. 46 (1994), 105-124 Zbl0798.20040MR1256730
  19. N. Xi, Representations of affine Hecke algebras, 1587 (1994), Springer-Verlag Zbl0817.20051MR1320509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.