Generalized Induction of Kazhdan-Lusztig cells
- [1] Aberdeen University Department of Mathematical Sciences King’s College Aberdeen AB24 3UE, Scotland (U.K.) Université de Lyon 1 Institut Camille Jordan, CNRS UMR 5208 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 4, page 1385-1412
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGuilhot, Jérémie. "Generalized Induction of Kazhdan-Lusztig cells." Annales de l’institut Fourier 59.4 (2009): 1385-1412. <http://eudml.org/doc/10432>.
@article{Guilhot2009,
abstract = {Following Lusztig, we consider a Coxeter group $W$ together with a weight function. Geck showed that the Kazhdan-Lusztig cells of $W$ are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of $W$ which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of $W$ are cells in the whole group, and we decompose the affine Weyl group of type $G$ into left and two-sided cells for a whole class of weight functions.},
affiliation = {Aberdeen University Department of Mathematical Sciences King’s College Aberdeen AB24 3UE, Scotland (U.K.) Université de Lyon 1 Institut Camille Jordan, CNRS UMR 5208 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex (France)},
author = {Guilhot, Jérémie},
journal = {Annales de l’institut Fourier},
keywords = {Coxeter groups; Affine Weyl groups; Hecke algebras; Kazhdan-Lusztig cells; Unequal parameters; affine Weyl groups; weight functions; unions of left cells; parabolic subgroups; generalized induction},
language = {eng},
number = {4},
pages = {1385-1412},
publisher = {Association des Annales de l’institut Fourier},
title = {Generalized Induction of Kazhdan-Lusztig cells},
url = {http://eudml.org/doc/10432},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Guilhot, Jérémie
TI - Generalized Induction of Kazhdan-Lusztig cells
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1385
EP - 1412
AB - Following Lusztig, we consider a Coxeter group $W$ together with a weight function. Geck showed that the Kazhdan-Lusztig cells of $W$ are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of $W$ which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of $W$ are cells in the whole group, and we decompose the affine Weyl group of type $G$ into left and two-sided cells for a whole class of weight functions.
LA - eng
KW - Coxeter groups; Affine Weyl groups; Hecke algebras; Kazhdan-Lusztig cells; Unequal parameters; affine Weyl groups; weight functions; unions of left cells; parabolic subgroups; generalized induction
UR - http://eudml.org/doc/10432
ER -
References
top- R. Bedard, Cells for two Coxeter groups, Comm. Algebra 14 (1986), 1253-1286 Zbl0608.20037MR842039
- K. Bremke, On generalized cells in affine Weyl groups, Journal of Algebra 191 (1997), 149-173 Zbl0942.20019MR1444494
- C. Chen, The decomposition into left cells of the affine Weyl group of type , Journal of Algebra 163 (1994), 692-728 Zbl0799.20039MR1265858
- F. Du Cloux, An abstract model for Bruhat intervals, European J. Combin. 21 (2000), 197-222 Zbl0953.05083MR1742435
- J. Du, The decomposition into cells of the affine Weyl group of type , Comm. Algebra 16 (1988), 1383-1409 Zbl0644.20030MR941176
- M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), 608-614 Zbl1045.20004MR1989489
- J. Guilhot, On the determination of Kazhdan-Lusztig cells for affine Weyl group with unequal parameters, Journal of Algebra 318 (2007), 893-917 Zbl1146.20033MR2371977
- J. Guilhot, Computations in Generalized induction of Kazhdan-Lusztig cells, available at (2008) Zbl1186.20004
- J. Guilhot, On the lowest two-sided cell in affine Weyl groups, Represent. Theory 12 (2008), 327-345 Zbl1161.20035MR2448287
- D. A. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math. 36 (1980), 185-203 Zbl0461.14015MR573434
- G. Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Advances in Mathematics 37 (1980), 121-164 Zbl0448.20039MR591724
- G. Lusztig, Cells in affine Weyl groups, Advanced Studies in Pure Math. 6 (1985), 255-287 Zbl0569.20032MR803338
- G. Lusztig, The two-sided cells of the affine Weyl group of type , Math. Sci. Res. Inst. Publ 4 (1985), 275-283 Zbl0602.20037MR823323
- G. Lusztig, Hecke algebras with unequal parameters, 18 (2003), CRM Monographs Ser. Zbl1051.20003MR1974442
- Martin Schönert, GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4, (1997), Aachen, Germany
- J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, 1179 (1986), Springer-Verlag Zbl0582.20030MR835214
- J.-Y. Shi, Left cells in affine Weyl group , Osaka J. Math. 31 (1994), 27-50 Zbl0816.20040MR1262787
- J.-Y. Shi, Left cells in affine Weyl groups, Tokohu Math. J. 46 (1994), 105-124 Zbl0798.20040MR1256730
- N. Xi, Representations of affine Hecke algebras, 1587 (1994), Springer-Verlag Zbl0817.20051MR1320509
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.