Approximate roots of pseudo-Anosov diffeomorphisms

T. M. Gendron[1]

  • [1] Universidad Nacional Autonoma de México Instituto de Matemáticas Av. Universidad S/N Unidad Cuernavaca C.P. 62210 Cuernavaca Morelos (MÉXICO)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 4, page 1413-1442
  • ISSN: 0373-0956

Abstract

top
The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of a closed surface has Teichmüller approximate n th roots for all n 2 . In this paper, we replace the Teichmüller topology by the heights-widths topology – that is induced by convergence of tangent quadratic differentials with respect to both the heights and widths functionals – and show that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate n th roots for all n 2 .

How to cite

top

Gendron, T. M.. "Approximate roots of pseudo-Anosov diffeomorphisms." Annales de l’institut Fourier 59.4 (2009): 1413-1442. <http://eudml.org/doc/10433>.

@article{Gendron2009,
abstract = {The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of a closed surface has Teichmüller approximate $n$th roots for all $n\ge 2$. In this paper, we replace the Teichmüller topology by the heights-widths topology – that is induced by convergence of tangent quadratic differentials with respect to both the heights and widths functionals – and show that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate $n$th roots for all $n\ge 2$.},
affiliation = {Universidad Nacional Autonoma de México Instituto de Matemáticas Av. Universidad S/N Unidad Cuernavaca C.P. 62210 Cuernavaca Morelos (MÉXICO)},
author = {Gendron, T. M.},
journal = {Annales de l’institut Fourier},
keywords = {Teichmuller space; pseudo-Anosov diffeomorphism; root conjecture; Teichmüller space; heights-widths topology; heights-widths roots},
language = {eng},
number = {4},
pages = {1413-1442},
publisher = {Association des Annales de l’institut Fourier},
title = {Approximate roots of pseudo-Anosov diffeomorphisms},
url = {http://eudml.org/doc/10433},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Gendron, T. M.
TI - Approximate roots of pseudo-Anosov diffeomorphisms
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1413
EP - 1442
AB - The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of a closed surface has Teichmüller approximate $n$th roots for all $n\ge 2$. In this paper, we replace the Teichmüller topology by the heights-widths topology – that is induced by convergence of tangent quadratic differentials with respect to both the heights and widths functionals – and show that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate $n$th roots for all $n\ge 2$.
LA - eng
KW - Teichmuller space; pseudo-Anosov diffeomorphism; root conjecture; Teichmüller space; heights-widths topology; heights-widths roots
UR - http://eudml.org/doc/10433
ER -

References

top
  1. I. Biswas, S. Nag, D. Sullivan, Determinant bundles, Quillen metrics and Mumford isomorphisms over the universal commensurability Teichmüller space, Acta Math. 176 (1996), 145-169 Zbl0959.32026MR1397561
  2. C. Bonatti, L. Paris, Roots in the mapping class group Zbl1160.57014
  3. A. J. Casson, S. A. Bleiler, Automorphisms of Surfaces After Nielsen and Thurston, (1988), Cambridge University Press, Cambridge Zbl0649.57008
  4. Leon Ehrenpreis, Cohomology with bounds, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) (1970), 389-395, Academic Press, London Zbl0239.55006MR276831
  5. Travaux de Thurston sur les surfaces, (1991), FathiA.A. Zbl0731.57001MR1134426
  6. J. Fehrenbach, J. Los, Roots, symmetries and conjugacy of pseudo Anosov mapping classes Zbl0988.37051
  7. F. R. Gantmacher, The Theory of Matrices, 1 & 2 (1998), AMS Chelsea Publishing, Providence, RI Zbl0927.15001MR1657129
  8. F. P. Gardiner, Teichmüller Theory and Quadratic Differentials, (1987), John Wiley and Sons Zbl0629.30002MR903027
  9. T. M. Gendron, The Ehrenpreis conjecture and the moduli-rigidity gap, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) (2002), 207-229, Contemp. Math. Zbl1098.30034MR1940171
  10. A. E. Harer, Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl. 30 (1988), 63-88 Zbl0662.57005MR964063
  11. J. Hubbard, H. Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), 221-274 Zbl0415.30038MR523212
  12. J. Kahn, V. Markovic, Random ideal triangulations and the Weil-Petersson distance between finite degree covers of punctured Riemann surfaces 
  13. S. P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), 23-41 Zbl0439.30012MR559474
  14. H. Masur, Dense geodesics in moduli space, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (1981), 417-438, Princeton Univ. Press, Princeton, N.J. Zbl0476.32027MR624830
  15. C. McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989), 95-127 Zbl0672.30017MR999314
  16. R. C. Penner, A construction of pseudo Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), 179-197 Zbl0706.57008MR930079
  17. R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443-450 Zbl0726.57013MR1068128
  18. R. C. Penner, J. L. Harer, Combinatorics of Train Tracks., 25 (1992), Princeton University Press, Princeton, NJ Zbl0765.57001MR1144770
  19. K. Strebel, Quadratic Differentials, (1984), Springer-Verlag, Berlin Zbl0547.30001MR743423
  20. W. P. Thurston, The Geometry and Topology of Three-Manifolds., Princeton University Notes (unpublished) (1979) 
  21. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces., Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431 Zbl0674.57008MR956596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.