Risk bounds for mixture density estimation
Alexander Rakhlin; Dmitry Panchenko; Sayan Mukherjee
ESAIM: Probability and Statistics (2010)
- Volume: 9, page 220-229
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory39 (1993) 930–945.
- A.R. Barron, Approximation and estimation bounds for artificial neural networks. Machine Learning14 (1994) 115–133.
- L. Birgé and P. Massart, Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields97 (1993) 113–150.
- R.M. Dudley, Uniform Central Limit Theorems. Cambridge University Press (1999).
- L.K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for Projection Pursuit Regression and neural network training. Ann. Stat.20 (1992) 608–613.
- M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, New York (1991).
- J. Li and A. Barron, Mixture density estimation, in Advances in Neural information processings systems 12, S.A. Solla, T.K. Leen and K.-R. Muller Ed. San Mateo, CA. Morgan Kaufmann Publishers (1999).
- J. Li, Estimation of Mixture Models. Ph.D. Thesis, The Department of Statistics. Yale University (1999).
- C. McDiarmid, On the method of bounded differences. Surveys in Combinatorics (1989) 148–188.
- S. Mendelson, On the size of convex hulls of small sets. J. Machine Learning Research2 (2001) 1–18.
- P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data. Adv. Comput. Math.10 (1999) 51–80.
- S.A. van de Geer, Rates of convergence for the maximum likelihood estimator in mixture models. Nonparametric Statistics6 (1996) 293–310.
- S.A. van de Geer, Empirical Processes in M-Estimation. Cambridge University Press (2000).
- A.W. van der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York (1996).
- W.H. Wong and X. Shen, Probability inequalities for likelihood ratios and convergence rates for sieve mles. Ann. Stat.23 (1995) 339–362.