The Frobenius action on rank vector bundles over curves in small genus and small characteristic
- [1] École Polytechnique CMLS 91128 Palaiseau Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 4, page 1641-1669
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDucrohet, Laurent. "The Frobenius action on rank $2$ vector bundles over curves in small genus and small characteristic." Annales de l’institut Fourier 59.4 (2009): 1641-1669. <http://eudml.org/doc/10437>.
@article{Ducrohet2009,
abstract = {Let $X$ be a general proper and smooth curve of genus $2$ (resp. of genus $3$) defined over an algebraically closed field of characteristic $p$. When $3\le p \le 7$, the action of Frobenius on rank $2$ semi-stable vector bundles with trivial determinant is completely determined by its restrictions to the 30 lines (resp. the 126 Kummer surfaces) that are invariant under the action of some order $2$ line bundle over $X$. Those lines (resp. those Kummer surfaces) are closely related to the elliptic curves (resp. the abelian surfaces) that appear as the Prym varieties associated to double étale coverings of $X$. We are therefore able to compute the explicit equations defining Frobenius action in these cases. We perform some of these computations and draw some geometric consequences.},
affiliation = {École Polytechnique CMLS 91128 Palaiseau Cedex (France)},
author = {Ducrohet, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Vector bundles; Frobenius; Prym varieties; vector bundles},
language = {eng},
number = {4},
pages = {1641-1669},
publisher = {Association des Annales de l’institut Fourier},
title = {The Frobenius action on rank $2$ vector bundles over curves in small genus and small characteristic},
url = {http://eudml.org/doc/10437},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Ducrohet, Laurent
TI - The Frobenius action on rank $2$ vector bundles over curves in small genus and small characteristic
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1641
EP - 1669
AB - Let $X$ be a general proper and smooth curve of genus $2$ (resp. of genus $3$) defined over an algebraically closed field of characteristic $p$. When $3\le p \le 7$, the action of Frobenius on rank $2$ semi-stable vector bundles with trivial determinant is completely determined by its restrictions to the 30 lines (resp. the 126 Kummer surfaces) that are invariant under the action of some order $2$ line bundle over $X$. Those lines (resp. those Kummer surfaces) are closely related to the elliptic curves (resp. the abelian surfaces) that appear as the Prym varieties associated to double étale coverings of $X$. We are therefore able to compute the explicit equations defining Frobenius action in these cases. We perform some of these computations and draw some geometric consequences.
LA - eng
KW - Vector bundles; Frobenius; Prym varieties; vector bundles
UR - http://eudml.org/doc/10437
ER -
References
top- A. Beauville, Fibrés de rang 2 sur une courbe, fibrés déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), 431-448 Zbl0691.14016MR1005388
- A. B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications 10 (1982), American Mathematical Society, Providence, R.I. Zbl55.0808.02MR733252
- Revêtements étales et groupe fondamental (SGA 1), (2003), Paris Zbl0234.14002
- B. van Geemen, Schottky-Jung relations and vector bundles on hyperelliptic curves, Math. Ann. 281 (1988), 431-449 Zbl0626.14034MR954151
- M. Gonzàlez-Dorrego, (16-6)-configurations and Geometry of Kummer surfaces in , 107 (1994), Memoirs of the American Math. Society Zbl0809.14032MR1182682
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1994), Wiley Classics Library. John Wiley and Sons, Inc., New York Zbl0836.14001MR1288523
- R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (1977), Springer, New-York Zbl0367.14001MR463157
- H. Lange, C. Pauly, On Frobenius-destabilized rank-2 vector bundles over curves, (2003) Zbl1157.14017
- H. Lange, U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Zeit 156 (1977), 73-83 Zbl0349.14018MR472827
- Y. Laszlo, C. Pauly, The action of the Frobenius map on rank 2 vector bunbles in characteristic 2, J. of Alg. Geom. 11 (2002), 219-243 Zbl1080.14527MR1874113
- Y. Laszlo, C. Pauly, The Frobenius map, rank 2 vector bunbles and Kummer’s quartic surface in characteristic 2 and 3, Advances in Mathematics 185 (2004), 246-269 Zbl1055.14038MR2060469
- S. Mochizuki, Foundations of -adic Teichmüller theory, AMS/IP Studies in Advanced Mathematics, Providence, RI (1999) Zbl0969.14013MR1700772
- D. Mumford, On equations defining abelian varieties. I, Invent. Math. 1 (1966), 287-354 Zbl0219.14024MR204427
- D. Mumford, Abelian varieties, 5 (1970), Tata Institute of Fundamental Research Studies in Mathematics, Bombay Zbl0223.14022MR282985
- D. Mumford, Prym varieties. I, Contributions to analysis (1974), 325-350, New York Academic Press, London Zbl0299.14018MR379510
- M. S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (1969), 14-51 Zbl0186.54902MR242185
- M. S. Narasimhan, S. Ramanan, -linear systems on abelian varieties. Vector bundles on algebraic varieties, Tata Inst. Fund. Res. Stud. Math. 11 (1987), 415-427, Tata Inst. Fund. Res., Bombay Zbl0685.14023MR893605
- B. Osserman, The generalized Verschiebung map for curves of genus 2, Math. Ann. 336 (2006), 963-986 Zbl1111.14031MR2255181
- B. Osserman, Mochizuki’s crys-stable bundles: a lexicon and applications, Publ. Res. Inst. Math. Sci. 43 (2007), 95-119 Zbl1141.14017MR2317114
- C. Pauly, Self-duality of Coble’s quartic hypersurface and applications, Michigan Math. J. 50 (2002), 551-574 Zbl1080.14528MR1935152
- M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103-125 Zbl0505.14011MR662131
- T. Sekiguchi, On projective normality of abelian varieties. II, J. Math. Soc. Japan 29 (1977), 709-727 Zbl0355.14017MR457457
- J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106 (1986), Springer-Verlag, New-York Zbl0585.14026MR817210
- B. Zhang, Revêtements étales abéliens de courbes génériques et ordinarité, Ann. Fac. Sci. Toulouse, Sér. 6 (1992), 133-138 Zbl0785.14014MR1191732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.