The Frobenius action on rank 2 vector bundles over curves in small genus and small characteristic

Laurent Ducrohet[1]

  • [1] École Polytechnique CMLS 91128 Palaiseau Cedex (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 4, page 1641-1669
  • ISSN: 0373-0956

Abstract

top
Let X be a general proper and smooth curve of genus 2 (resp. of genus 3 ) defined over an algebraically closed field of characteristic p . When 3 p 7 , the action of Frobenius on rank 2 semi-stable vector bundles with trivial determinant is completely determined by its restrictions to the 30 lines (resp. the 126 Kummer surfaces) that are invariant under the action of some order 2 line bundle over X . Those lines (resp. those Kummer surfaces) are closely related to the elliptic curves (resp. the abelian surfaces) that appear as the Prym varieties associated to double étale coverings of X . We are therefore able to compute the explicit equations defining Frobenius action in these cases. We perform some of these computations and draw some geometric consequences.

How to cite

top

Ducrohet, Laurent. "The Frobenius action on rank $2$ vector bundles over curves in small genus and small characteristic." Annales de l’institut Fourier 59.4 (2009): 1641-1669. <http://eudml.org/doc/10437>.

@article{Ducrohet2009,
abstract = {Let $X$ be a general proper and smooth curve of genus $2$ (resp. of genus $3$) defined over an algebraically closed field of characteristic $p$. When $3\le p \le 7$, the action of Frobenius on rank $2$ semi-stable vector bundles with trivial determinant is completely determined by its restrictions to the 30 lines (resp. the 126 Kummer surfaces) that are invariant under the action of some order $2$ line bundle over $X$. Those lines (resp. those Kummer surfaces) are closely related to the elliptic curves (resp. the abelian surfaces) that appear as the Prym varieties associated to double étale coverings of $X$. We are therefore able to compute the explicit equations defining Frobenius action in these cases. We perform some of these computations and draw some geometric consequences.},
affiliation = {École Polytechnique CMLS 91128 Palaiseau Cedex (France)},
author = {Ducrohet, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Vector bundles; Frobenius; Prym varieties; vector bundles},
language = {eng},
number = {4},
pages = {1641-1669},
publisher = {Association des Annales de l’institut Fourier},
title = {The Frobenius action on rank $2$ vector bundles over curves in small genus and small characteristic},
url = {http://eudml.org/doc/10437},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Ducrohet, Laurent
TI - The Frobenius action on rank $2$ vector bundles over curves in small genus and small characteristic
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1641
EP - 1669
AB - Let $X$ be a general proper and smooth curve of genus $2$ (resp. of genus $3$) defined over an algebraically closed field of characteristic $p$. When $3\le p \le 7$, the action of Frobenius on rank $2$ semi-stable vector bundles with trivial determinant is completely determined by its restrictions to the 30 lines (resp. the 126 Kummer surfaces) that are invariant under the action of some order $2$ line bundle over $X$. Those lines (resp. those Kummer surfaces) are closely related to the elliptic curves (resp. the abelian surfaces) that appear as the Prym varieties associated to double étale coverings of $X$. We are therefore able to compute the explicit equations defining Frobenius action in these cases. We perform some of these computations and draw some geometric consequences.
LA - eng
KW - Vector bundles; Frobenius; Prym varieties; vector bundles
UR - http://eudml.org/doc/10437
ER -

References

top
  1. A. Beauville, Fibrés de rang 2 sur une courbe, fibrés déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), 431-448 Zbl0691.14016MR1005388
  2. A. B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications 10 (1982), American Mathematical Society, Providence, R.I. Zbl55.0808.02MR733252
  3. Revêtements étales et groupe fondamental (SGA 1), (2003), Paris Zbl0234.14002
  4. B. van Geemen, Schottky-Jung relations and vector bundles on hyperelliptic curves, Math. Ann. 281 (1988), 431-449 Zbl0626.14034MR954151
  5. M. Gonzàlez-Dorrego, (16-6)-configurations and Geometry of Kummer surfaces in 3 , 107 (1994), Memoirs of the American Math. Society Zbl0809.14032MR1182682
  6. P. Griffiths, J. Harris, Principles of algebraic geometry, (1994), Wiley Classics Library. John Wiley and Sons, Inc., New York Zbl0836.14001MR1288523
  7. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (1977), Springer, New-York Zbl0367.14001MR463157
  8. H. Lange, C. Pauly, On Frobenius-destabilized rank-2 vector bundles over curves, (2003) Zbl1157.14017
  9. H. Lange, U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Zeit 156 (1977), 73-83 Zbl0349.14018MR472827
  10. Y. Laszlo, C. Pauly, The action of the Frobenius map on rank 2 vector bunbles in characteristic 2, J. of Alg. Geom. 11 (2002), 219-243 Zbl1080.14527MR1874113
  11. Y. Laszlo, C. Pauly, The Frobenius map, rank 2 vector bunbles and Kummer’s quartic surface in characteristic 2 and 3, Advances in Mathematics 185 (2004), 246-269 Zbl1055.14038MR2060469
  12. S. Mochizuki, Foundations of p -adic Teichmüller theory, AMS/IP Studies in Advanced Mathematics, Providence, RI (1999) Zbl0969.14013MR1700772
  13. D. Mumford, On equations defining abelian varieties. I, Invent. Math. 1 (1966), 287-354 Zbl0219.14024MR204427
  14. D. Mumford, Abelian varieties, 5 (1970), Tata Institute of Fundamental Research Studies in Mathematics, Bombay Zbl0223.14022MR282985
  15. D. Mumford, Prym varieties. I, Contributions to analysis (1974), 325-350, New York Academic Press, London Zbl0299.14018MR379510
  16. M. S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (1969), 14-51 Zbl0186.54902MR242185
  17. M. S. Narasimhan, S. Ramanan, 2 θ -linear systems on abelian varieties. Vector bundles on algebraic varieties, Tata Inst. Fund. Res. Stud. Math. 11 (1987), 415-427, Tata Inst. Fund. Res., Bombay Zbl0685.14023MR893605
  18. B. Osserman, The generalized Verschiebung map for curves of genus 2, Math. Ann. 336 (2006), 963-986 Zbl1111.14031MR2255181
  19. B. Osserman, Mochizuki’s crys-stable bundles: a lexicon and applications, Publ. Res. Inst. Math. Sci. 43 (2007), 95-119 Zbl1141.14017MR2317114
  20. C. Pauly, Self-duality of Coble’s quartic hypersurface and applications, Michigan Math. J. 50 (2002), 551-574 Zbl1080.14528MR1935152
  21. M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103-125 Zbl0505.14011MR662131
  22. T. Sekiguchi, On projective normality of abelian varieties. II, J. Math. Soc. Japan 29 (1977), 709-727 Zbl0355.14017MR457457
  23. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106 (1986), Springer-Verlag, New-York Zbl0585.14026MR817210
  24. B. Zhang, Revêtements étales abéliens de courbes génériques et ordinarité, Ann. Fac. Sci. Toulouse, Sér. 6 (1992), 133-138 Zbl0785.14014MR1191732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.