The higher transvectants are redundant
Abdelmalek Abdesselam[1]; Jaydeep Chipalkatti[2]
- [1] University of Virginia Department of Mathematics Kerchof Hall P. O. Box 400137 Charlottesville, VA 22904-4137 (USA)
- [2] University of Manitoba Department of Mathematics 433 Machray Hall Winnipeg MB R3T 2N2 (Canada)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 1671-1713
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAbdesselam, Abdelmalek, and Chipalkatti, Jaydeep. "The higher transvectants are redundant." Annales de l’institut Fourier 59.5 (2009): 1671-1713. <http://eudml.org/doc/10438>.
@article{Abdesselam2009,
abstract = {Let $A,B$ denote generic binary forms, and let $\mathfrak\{u\}_r = (A,B)_r$ denote their $r$-th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the $\lbrace \mathfrak\{u\}_r\rbrace $. As a consequence, we show that each of the higher transvectants $\lbrace \mathfrak\{u\}_r: r \ge 2\rbrace $ is redundant in the sense that it can be completely recovered from $\mathfrak\{u\}_0$ and $\mathfrak\{u\}_1$. This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of $SL_2$-representations, and the notion of a 9-j symbol from the quantum theory of angular momentum.We give explicit computational examples for $SL_3, \mathfrak\{g\}_2$ and $\mathfrak\{S\}_5$ to show that this result has possible analogues for other categories of representations.},
affiliation = {University of Virginia Department of Mathematics Kerchof Hall P. O. Box 400137 Charlottesville, VA 22904-4137 (USA); University of Manitoba Department of Mathematics 433 Machray Hall Winnipeg MB R3T 2N2 (Canada)},
author = {Abdesselam, Abdelmalek, Chipalkatti, Jaydeep},
journal = {Annales de l’institut Fourier},
keywords = {Angular momentum in quantum mechanics; binary forms; Cauchy exact sequence; 9-j symbols; representations of $SL_2$; transvectants; invariant theory; representation theory},
language = {eng},
number = {5},
pages = {1671-1713},
publisher = {Association des Annales de l’institut Fourier},
title = {The higher transvectants are redundant},
url = {http://eudml.org/doc/10438},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Abdesselam, Abdelmalek
AU - Chipalkatti, Jaydeep
TI - The higher transvectants are redundant
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 1671
EP - 1713
AB - Let $A,B$ denote generic binary forms, and let $\mathfrak{u}_r = (A,B)_r$ denote their $r$-th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the $\lbrace \mathfrak{u}_r\rbrace $. As a consequence, we show that each of the higher transvectants $\lbrace \mathfrak{u}_r: r \ge 2\rbrace $ is redundant in the sense that it can be completely recovered from $\mathfrak{u}_0$ and $\mathfrak{u}_1$. This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of $SL_2$-representations, and the notion of a 9-j symbol from the quantum theory of angular momentum.We give explicit computational examples for $SL_3, \mathfrak{g}_2$ and $\mathfrak{S}_5$ to show that this result has possible analogues for other categories of representations.
LA - eng
KW - Angular momentum in quantum mechanics; binary forms; Cauchy exact sequence; 9-j symbols; representations of $SL_2$; transvectants; invariant theory; representation theory
UR - http://eudml.org/doc/10438
ER -
References
top- A. Abdesselam, The combinatorics of classical invariant theory revisited by modern physics, Slides of Feb 2007 talk at the Montreal CRM workshop “Combinatorial Problems Raised by Statistical Mechanics”. Available at http://people.virginia.edu/aa4cr/MontrealFeb07slides.pdf
- A. Abdesselam, J. Chipalkatti, The bipartite Brill-Gordan locus and angular momentum, Transform. Groups 11 (2006), 341-370 Zbl1103.14030MR2264458
- A. Abdesselam, J. Chipalkatti, Brill-Gordan Loci, transvectants and an analogue of the Foulkes conjecture, Adv. Math 208 (2007), 491-520 Zbl1131.05005MR2304326
- K. Akin, D. Buchsbaum, J. Weyman, Schur functors and Schur complexes, Adv. Math. 44 (1982), 207-278 Zbl0497.15020MR658729
- S. J. Ališauskas, A. P. Jucys, Weight lowering operators and the multiplicity-free isoscalar factors for the group , J. Math. Phys. 12 (1971), 594-605 Zbl0214.28902MR286378
- L. C. Biedenharn, J. D. Louck, Angular Momentum in Quantum Physics. Theory and Application, 8 (1981), Addison-Wesley Zbl0474.00023MR635121
- N. Bourbaki, Topological Vector Spaces, (1987), Springer-Verlag Zbl0622.46001MR910295
- J. Brunnemann, T. Thiemann, Simplification of the spectral analysis of the volume operator in loop quantum gravity, Class. Quant. Grav. 23 (2006), 1289-1346 Zbl1089.83013MR2205485
- P. J. Brussaard, Clebsch-Gordan- of Wigner coefficienten, Ned. Tijdschr. Natuurk. 33 (1967), 202-222
- J. Carter, D. Flath, M. Saito, The Classical and Quantum 6j-Symbols, (1995), Princeton University Press Zbl0851.17001MR1366832
- A. Cayley, On linear transformations, (1889), Cambridge University Press Zbl01.0277.03
- J. Chipalkatti, On the invariant theory of the Bezoutiant, Beiträge Alg. Geom. 47 (2006), 397-417 Zbl1112.13009MR2307911
- A. Clebsch, Theorie der Binaren Algebraischen Formen, (1872), Teubner, Leipzig Zbl02.0058.02
- E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra, (1935), Cambridge University Press Zbl0014.04605
- I. Dolgachev, Lectures on Invariant Theory, (2003), Cambridge University Press Zbl1023.13006MR2004511
- A. R. Edmonds, Angular Momentum in Quantum Mechanics, (1957), Princeton University Press Zbl0079.42204MR95700
- D. Flath, The Clebsch-Gordan formulas, Enseign. Math. (2) 29 (1983), 339-346 Zbl0524.17003MR719316
- W. Fulton, Young Tableaux, (1957), Cambridge University Press Zbl0878.14034MR1464693
- W. Fulton, J. Harris, Representation Theory, A First Course, (1991), Springer–Verlag Zbl0744.22001MR1153249
- O. Glenn, The Theory of Invariants, (1915), Ginn and Co., Boston Zbl45.0240.01
- L. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991), 129-144 Zbl0732.14013MR1093002
- P. Gordan, Die Resultante Binärer Formen, Rend. Circ. Matem. Palermo XXII (1906), 161-196 Zbl37.0192.08
- J. H. Grace, A. Young, The Algebra of Invariants, 1903, (1962), Reprinted by Chelsea Publishing Co., New York Zbl34.0114.01
- J. Harris, Algebraic Geometry, A First Course, (1992), Springer–Verlag Zbl0779.14001MR1182558
- R. Hartshorne, Algebraic Geometry, (1977), Springer-Verlag Zbl0367.14001MR463157
- J.-S. Huang, C.-B. Zhu, Weyl’s construction and tensor power decomposition for , Proc. Amer. Math. Soc. 127 (1999), 925-934 Zbl0912.22006MR1469412
- H. A. Jahn, J. Hope, Symmetry properties of the Wigner 9j symbol, Phys. Rev. 93 (1954), 318-321 Zbl0055.43704
- J. Van der Jeugt, N. Pitre Sangita, K. Srinivasa Rao, Multiple hypergeometric functions and 9-j coefficients, J. Phys A: Math. Gen. 27 (1994), 5251-5264 Zbl0847.33009MR1295355
- A. P. Jucys, A. A. Bandzaitis, Angular Momentum in Quantum Physics, (1977), Vilnius: Mokslas
- A. A. Kirillov, Elements of the Theory of Representations, (1976), Springer-Verlag Zbl0342.22001MR412321
- J. P. S. Kung, G.-C. Rota, The invariant theory of binary forms, Bulletin of the A.M.S. 10 (1984), 27-85 Zbl0577.15020MR722856
- D. E. Littlewood, Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. London. Ser. A 239 (1944), 305-365 Zbl0060.04402MR10594
- I. G. MacDonald, Symmetric Functions and Hall polynomials, (1995), Oxford University Press Zbl0824.05059MR1354144
- D. Mumford, Lectures on Curves on an Algebraic Surface, (1966), Princeton University Press Zbl0187.42701MR209285
- P. Olver, Classical Invariant Theory, (1999), Cambridge University Press Zbl0971.13004MR1694364
- G. Racah, Theory of complex spectra II, Phys. Rev. 62 (1942), 438-462
- H. Rosengren, On the triple sum formula for Wigner 9j-symbols, J. Math. Phys. 39 (1998), 6730-6744 Zbl0935.81036MR1660852
- H. Rosengren, Another proof of the triple sum formula for Wigner 9j-symbols, J. Math. Phys. 40 (1999), 6689-6691 Zbl0967.81032MR1725880
- G. Salmon, Higher Algebra, (1965), Reprinted by Chelsea Publishing Co., New York
- T. A. Springer, Invariant Theory, (1977), Springer-Verlag Zbl0346.20020MR447428
- E. Stroh, Entwicklung der Grundsyzyganten der binären Form fünfter Ordnung, Math. Ann. 34 (1889), 354-370 Zbl21.0108.01MR1510582
- B. Sturmfels, Algorithms in Invariant Theory, (1993), Springer-Verlag Zbl0802.13002MR1255980
- E. Wigner, Group Theory and Its Application to the Quantum Theory of Atomic Spectra, (1959), Academic Press Zbl0085.37905MR106711
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.