Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator
Arzu Boysal[1]; Michèle Vergne[2]
- [1] Bogaziçi University Faculty of Arts and Science Department of Mathematics 34342, Bebek-Istanbul (Turkey)
- [2] Ecole Polytechnique Centre de Mathématiques Laurent Schwartz 91128 Palaiseau Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 1715-1752
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoysal, Arzu, and Vergne, Michèle. "Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator." Annales de l’institut Fourier 59.5 (2009): 1715-1752. <http://eudml.org/doc/10439>.
@article{Boysal2009,
abstract = {Let $P(s)$ be a family of rational polytopes parametrized by inequations. It is known that the volume of $P(s)$ is a locally polynomial function of the parameters. Similarly, the number of integral points in $P(s)$ is a locally quasi-polynomial function of the parameters. Paul-Émile Paradan proved a jump formula for this function, when crossing a wall. In this article, we give an algebraic proof of this formula. Furthermore, we give a residue formula for the jump, which enables us to compute it.},
affiliation = {Bogaziçi University Faculty of Arts and Science Department of Mathematics 34342, Bebek-Istanbul (Turkey); Ecole Polytechnique Centre de Mathématiques Laurent Schwartz 91128 Palaiseau Cedex (France)},
author = {Boysal, Arzu, Vergne, Michèle},
journal = {Annales de l’institut Fourier},
keywords = {Polytopes; toric varieties; polytopes},
language = {eng},
number = {5},
pages = {1715-1752},
publisher = {Association des Annales de l’institut Fourier},
title = {Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator},
url = {http://eudml.org/doc/10439},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Boysal, Arzu
AU - Vergne, Michèle
TI - Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 1715
EP - 1752
AB - Let $P(s)$ be a family of rational polytopes parametrized by inequations. It is known that the volume of $P(s)$ is a locally polynomial function of the parameters. Similarly, the number of integral points in $P(s)$ is a locally quasi-polynomial function of the parameters. Paul-Émile Paradan proved a jump formula for this function, when crossing a wall. In this article, we give an algebraic proof of this formula. Furthermore, we give a residue formula for the jump, which enables us to compute it.
LA - eng
KW - Polytopes; toric varieties; polytopes
UR - http://eudml.org/doc/10439
ER -
References
top- M. Welleda Baldoni, Matthias Beck, Charles Cochet, Michèle Vergne, Volume computation for polytopes and partition functions for classical root systems, Discrete Comput. Geom. 35 (2006), 551-595 Zbl1105.52001MR2225674
- W. Baldoni-Silva, J. A. De Loera, M. Vergne, Counting integer flows in networks, Found. Comput. Math. 4 (2004), 277-314 Zbl1083.68640MR2078665
- Michel Brion, Michèle Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797-833 Zbl0926.52016MR1446364
- Wolfgang Dahmen, Charles A. Micchelli, The number of solutions to linear Diophantine equations and multivariate splines, Trans. Amer. Math. Soc. 308 (1988), 509-532 Zbl0655.10013MR951619
- C. De Concini, C. Procesi, Topics in hyperplane arrangements, polytopes and box splines Zbl1217.14001
- C. De Concini, C. Procesi, M. Vergne, Vector partition functions and generalized Dahmen-Miccelli spaces Zbl1223.58015
- A. G. Khovanskiĭ, A. V. Pukhlikov, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra i Analiz 4 (1992), 188-216 Zbl0798.52010MR1190788
- P.-E. Paradan, Jump formulas in Hamiltonian Geometry Zbl1253.53083
- András Szenes, Michèle Vergne, Residue formulae for vector partitions and Euler-MacLaurin sums, Adv. in Appl. Math. 30 (2003), 295-342 Zbl1067.52014MR1979797
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.