Large sets with small doubling modulo are well covered by an arithmetic progression
Oriol Serra[1]; Gilles Zémor[2]
- [1] Universitat Politècnica de Catalunya Matemàtica Aplicada IV Campus Nord - Edif. C3, C. Jordi Girona, 1-3 08034 Barcelona (Spain)
- [2] Université Bordeaux 1 Institut de Mathématiques de Bordeaux, UMR 5251 351, cours de la Libération 33405 Talence (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 2043-2060
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSerra, Oriol, and Zémor, Gilles. "Large sets with small doubling modulo $p$ are well covered by an arithmetic progression." Annales de l’institut Fourier 59.5 (2009): 2043-2060. <http://eudml.org/doc/10446>.
@article{Serra2009,
abstract = {We prove that there is a small but fixed positive integer $\epsilon $ such that for every prime $p$ larger than a fixed integer, every subset $S$ of the integers modulo $p$ which satisfies $|2S|\le (2+\epsilon )|S|$ and $2(|2S|)-2|S|+3\le p$ is contained in an arithmetic progression of length $|2S|-|S|+1$. This is the first result of this nature which places no unnecessary restrictions on the size of $S$.},
affiliation = {Universitat Politècnica de Catalunya Matemàtica Aplicada IV Campus Nord - Edif. C3, C. Jordi Girona, 1-3 08034 Barcelona (Spain); Université Bordeaux 1 Institut de Mathématiques de Bordeaux, UMR 5251 351, cours de la Libération 33405 Talence (France)},
author = {Serra, Oriol, Zémor, Gilles},
journal = {Annales de l’institut Fourier},
keywords = {Sumset; arithmetic progression; additive combinatorics; sumset},
language = {eng},
number = {5},
pages = {2043-2060},
publisher = {Association des Annales de l’institut Fourier},
title = {Large sets with small doubling modulo $p$ are well covered by an arithmetic progression},
url = {http://eudml.org/doc/10446},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Serra, Oriol
AU - Zémor, Gilles
TI - Large sets with small doubling modulo $p$ are well covered by an arithmetic progression
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 2043
EP - 2060
AB - We prove that there is a small but fixed positive integer $\epsilon $ such that for every prime $p$ larger than a fixed integer, every subset $S$ of the integers modulo $p$ which satisfies $|2S|\le (2+\epsilon )|S|$ and $2(|2S|)-2|S|+3\le p$ is contained in an arithmetic progression of length $|2S|-|S|+1$. This is the first result of this nature which places no unnecessary restrictions on the size of $S$.
LA - eng
KW - Sumset; arithmetic progression; additive combinatorics; sumset
UR - http://eudml.org/doc/10446
ER -
References
top- Y. F. Bilu, V. F. Lev, I. Z. Ruzsa, Rectification principles in additive number theory, Discrete Comput. Geom. 19 (1998), 343-353 Zbl0899.11002MR1608875
- G. A. Freĭman, The addition of finite sets. I, Izv. Vysš. Učebn. Zaved. Matematika 1959 (1959), 202-213 Zbl0096.25904MR126388
- G. A. Freĭman, Inverse problems in additive number theory. Addition of sets of residues modulo a prime, Dokl. Akad. Nauk SSSR 141 (1961), 571-573 Zbl0109.27203MR155810
- G. A. Freĭman, Foundations of a structural theory of set addition, (1973), American Mathematical Society, Providence, R. I. Zbl0271.10044MR360496
- Ben Green, Imre Z. Ruzsa, Sets with small sumset and rectification, Bull. London Math. Soc. 38 (2006), 43-52 Zbl1155.11307MR2201602
- Yahya O. Hamidoune, On the connectivity of Cayley digraphs, European J. Combin. 5 (1984), 309-312 Zbl0561.05028MR782052
- Yahya O. Hamidoune, An isoperimetric method in additive theory, J. Algebra 179 (1996), 622-630 Zbl0842.20029MR1367866
- Yahya O. Hamidoune, Subsets with small sums in abelian groups. I. The Vosper property, European J. Combin. 18 (1997), 541-556 Zbl0883.05065MR1455186
- Yahya O. Hamidoune, Some results in additive number theory. I. The critical pair theory, Acta Arith. 96 (2000), 97-119 Zbl0985.11011MR1814447
- Yahya O. Hamidoune, Øystein J. Rødseth, An inverse theorem mod , Acta Arith. 92 (2000), 251-262 Zbl0945.11003
- Yahya O. Hamidoune, Oriol Serra, Gilles Zémor, On the critical pair theory in , Acta Arith. 121 (2006), 99-115 Zbl1147.11060MR2216136
- Yahya O. Hamidoune, Oriol Serra, Gilles Zémor, On the critical pair theory in abelian groups: beyond Chowla’s theorem, Combinatorica 28 (2008), 441-467 Zbl1192.11071MR2452844
- Vsevolod F. Lev, Pavel Y. Smeliansky, On addition of two distinct sets of integers, Acta Arith. 70 (1995), 85-91 Zbl0817.11005MR1318763
- Melvyn B. Nathanson, Additive number theory, 165 (1996), Springer-Verlag, New York Zbl0859.11002MR1477155
- Øystein J. Rødseth, On Freiman’s 2.4-Theorem, Skr. K. Nor. Vidensk. Selsk. (2006), 11-18 Zbl1162.11010
- Imre Z. Ruzsa, An application of graph theory to additive number theory, Sci. Ser. A Math. Sci. (N.S.) 3 (1989), 97-109 Zbl0743.05052MR2314377
- Oriol Serra, Gilles Zémor, On a generalization of a theorem by Vosper, Integers (2000) Zbl0953.11031MR1771980
- Terence Tao, Van Vu, Additive combinatorics, 105 (2006), Cambridge University Press, Cambridge Zbl1127.11002MR2289012
- A. G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200-205 Zbl0072.03402MR77555
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.