The set covering problem : a group theoretic approach

Hervé Thiriez

RAIRO - Operations Research - Recherche Opérationnelle (1971)

  • Volume: 5, Issue: V3, page 83-103
  • ISSN: 0399-0559

How to cite

top

Thiriez, Hervé. "The set covering problem : a group theoretic approach." RAIRO - Operations Research - Recherche Opérationnelle 5.V3 (1971): 83-103. <http://eudml.org/doc/104532>.

@article{Thiriez1971,
author = {Thiriez, Hervé},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {V3},
pages = {83-103},
publisher = {EDP-Sciences},
title = {The set covering problem : a group theoretic approach},
url = {http://eudml.org/doc/104532},
volume = {5},
year = {1971},
}

TY - JOUR
AU - Thiriez, Hervé
TI - The set covering problem : a group theoretic approach
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1971
PB - EDP-Sciences
VL - 5
IS - V3
SP - 83
EP - 103
LA - eng
UR - http://eudml.org/doc/104532
ER -

References

top
  1. [1] J. P. ARABEYRE, J. FEARNLEY, F. STEIGER and W. TEATHER, «The airline crew scheduling problem : a survey», Transportation Science, 3, n° 2, May 1969. 
  2. [2] P. BERTHIER, PHONG TRUAN NGHIEM et B. ROY, «Programmes linéaires en nombres entiers et procédures S.E.P.», METRA, vol. 4, n° 3, 1965. 
  3. [3] E. BALAS, « An additive algorithm for solving linear programs with 0-1 variables »,Operations Research, 13, n° 4, 1965. Zbl0133.42701MR183535
  4. [4] R. S. GARFINKEL and G. L. NEMHAUSER, «The set partitioning problem : set covering with equality constraints», Operations Research, 17, pp. 848-856, 1969. Zbl0184.23101
  5. [5] A. M. GEOFFRION, An Improved Implicit Enumeration Approach for Integer Programming, The Rand Corporation, RM-5644-PR, June 1968. Zbl0174.20801
  6. [6] F. GLOVER. A Multiplan Dual Algorithm for the 0-1 Integer Programming Problem. Case Institute of Technology, Management Science Report n° 25, 1965. 
  7. [7] R. E. GOMORY, « On the relation between integer and noninteger solutions to linear programs », Proc. Nat. Acad. Sci., 53, pp. 260-295, 1965. Zbl0132.13702MR182454
  8. [8] R. E. GOMORY, « An Algorithm for Integer Solutions to Linear Programs », pp. 269-302 in Recent Advances in Mathematical Programming, Graves, R. L., and Wolfe, P., (Eds.), McGraw-Hill, 1963. Zbl0235.90038MR174390
  9. [9] W. C. HEALY Jr., « Multiple choice programming », Operations Research, 12, pp. 122-138, 1964. Zbl0123.37205MR163765
  10. [10] R. W. HOUSE, L. D. NELSON and T. RADO, « Computer Studies of a Certain Class of Linear Integer Problems », Recent Advances in Optimization Techniques, Lavi, A., and Vogl, T., (Eds.), Wiley, 1966. Zbl0146.41007
  11. [11] A. H. LAND and A. G. DOIG, « An automatic method of solving discrete linear programming problems », Econometrica, 28, pp. 497-520, 1960. Zbl0101.37004MR115825
  12. [12] E. L. LAWLER and M. D. BELL, « A method for solving discrete optimization problems », Operations Research, 14, n° 6, 1966. 
  13. [13] G. D. MOSTOW, J. H. SAMPSON and J. P. MEYER, Fundamental Structures of Algebra, McGraw-Hill, 1963. Zbl0107.01103MR154830
  14. [14] J. F. PIERCE, « Application of combinatorial programming to a class of all-zero-one integer programming problems », Management Science, 15, pp. 191-209, 1968. MR241111
  15. [15] R. ROTH, « Computer solutions to minimum cover problems », Operations Research, 17, pp. 455-466, 1969. Zbl0174.20706
  16. [16] B. ROY et R. BENAYOUN, « Programmes linéaires en variables bivalentes et continues sur un graphe (Programme Poligami) », METRA, vol. 6, n° 4, 1967. 
  17. [17] B. ROY, Algèbre Moderne et Théorie des Graphes, Dunod éd., 1970. MR260413
  18. [18] B. ROY, An Algorithm for a General Constrained Set Covering Problem, Computing and Graph Theory (To be published), Academic Press, New York. Zbl0255.05006MR340061
  19. [19] J. F. SHAPIRO, « Dynamic programming algorithms for the integer programming problem-I : the integer programming problem viewed as a knapsack type problem »,Operations Research, 16, 1968. Zbl0159.48803MR232596
  20. [20] J. F. SHAPIRO, « Group theoretic algorithms for the integer programming problem-II : extension to a general algorithm », Operations Research, 16, n° 5, 1968. Zbl0169.22401MR237177
  21. [21] H. M. THIRIEZ, Implicit Enumeration Applied to the Crew Scheduling Problem, Dept. of Aeronautics, M.I.T., 1968. 
  22. [22] H. M. THIRIEZ, Airline Crew Scheduling : a Group Theoretic Approach, Ph. D. Thesis, M.I.T. FTL-R69-1, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.