Un algorithme pour les problèmes de recouvrement

M. Gondran; J. L. Laurière

RAIRO - Operations Research - Recherche Opérationnelle (1975)

  • Volume: 9, Issue: V2, page 33-51
  • ISSN: 0399-0559

How to cite


Gondran, M., and Laurière, J. L.. "Un algorithme pour les problèmes de recouvrement." RAIRO - Operations Research - Recherche Opérationnelle 9.V2 (1975): 33-51. <http://eudml.org/doc/104616>.

author = {Gondran, M., Laurière, J. L.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {fre},
number = {V2},
pages = {33-51},
publisher = {EDP-Sciences},
title = {Un algorithme pour les problèmes de recouvrement},
url = {http://eudml.org/doc/104616},
volume = {9},
year = {1975},

AU - Gondran, M.
AU - Laurière, J. L.
TI - Un algorithme pour les problèmes de recouvrement
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1975
PB - EDP-Sciences
VL - 9
IS - V2
SP - 33
EP - 51
LA - fre
UR - http://eudml.org/doc/104616
ER -


  1. [1] AGARD J., ARABEYRE J. P, VAUTIER J., Génération automatique des rotations d'équipages, R.I.R.O., n° 6, 1967. 
  2. [2] HEURGON E., Un problème de recouvrement : l'habillage des horaires des lignes d'autobus, R.A.I.R.O., 6e année, n° V-l, 1972, ,p. 13-29. 
  3. [3] GARFINKEL R. S. and NEMHAUSER G. L., Optimal Political Distriucting by Implicit Enumeration Techniques, Management Science, 16, B 495-B 508. Zbl0195.22103
  4. [4] ROY B., An algorithm for General Constrained Set Covering Problem, in GraphTheory and Computing, Academic Press Inc., p. 267-283. Zbl0255.05006MR340061
  5. [5] AUZET C., Un modèle de recouvrement sous contraintes : synthèse des principales applications possibles, , Direction Scientifique de METRA, note de travail n° 184,janvier 1973. 
  6. [6] MARTIN G., An accelerated Euclidean Algorithm for Integer Linear Programming, in Recent Advances in Mathematical Programming (Graves and Wolfe, éd.), McGraw-Hill, New York, 1963. Zbl0129.34201MR157776
  7. [7] SALKIN H. M. and KONCAL R. D., Set Covering by an All Integer Algorithm : Computational Experience, Journal of the Association for Computing Machinery 1973, vol. 20, n° 2, p. 189-193. Zbl0258.65067
  8. [8] GONDRAN M., Un algorithme de coupes efficace par la méthode des congruences décroissantes, note EDF, HI 1234/02 du 11juillet 1973. 
  9. [9] DELORME J., Thèse de troisième cycle, à paraître. 
  10. [10] LEMKE C., SALKIN H. and SPIELBERG K., Set Covering by single branch enumeration with linear programming subproblems, Oper. Res., 19(1971), , p. 998-1022. Zbl0232.90033MR418914
  11. [11] PIERCE J. F. and LASKY, All-zero-one Integer Programming Problems, ManagementScience 19, n° 5 (1973), p. 528-543. Zbl0254.90042
  12. [12] THIRIEZ Z., Airline Crew Scheduling : a group theoric Approach, 1969, Rep. R-67 Flight Transportation Laboratory, Massachusetts Institute of Technology. 
  13. [13] HOUSE R. W., NELSON L. D. and RADO J.Computer Studies of a Certain Classof Linear Integer Problems, in Recent Advances in Optimization Techniques (Lavi and Vogl ed.), John Wiley and Sons, 1966. Zbl0146.41007
  14. [14] BELLMORE M. and RATLIFF H. D., Set Covering and Involutory Bases, Management Science 18 (1971), p. 194-206. Zbl0241.90036MR386684
  15. [15] ROY B., Algèbre linéaire et théorie des graphes, Tome 2, Chap. 10, Dunod, 1970. MR260413
  16. [16] GONDRAN M. et LAURIÈRE J. L., Un algorithme pour le problème de partitionnement, R.A.I.R.O., n° V-l, 1974, p.25-38. Zbl0272.90045
  17. [17] GARFINKEL R. S. and NEMHAUSER G. L., Integer Programming, chapitre 8,John Wiley and Sons, 1972. Zbl0259.90022MR381688
  18. [18] DANTZIG G. B., FULKERSON D. R. and JOHNSON S. M., Solution of a large Scale Travelling Salesman Problem, Opns. Res. 2 (1954), p. 393-410. MR70932
  19. [19] HELD M.and KARP R. M., The traveling-Salesman Problem and Minimum Spanning Trees, Opns. Res. 18 ( 1970, p. 1138-1162. Zbl0226.90047MR278710
  20. [20] LITTLE J., MURTY K., SWEENEY D. and KAREL C., An algorithm for the Traveling Salesman Problem, Opns. Res. 11 (1963), p. 979-989. Zbl0161.39305
  21. [21] HAMMER P. L., Booleau procedures for bivalent programming, in Mathematical programming theory and applications, North Holland, 1974. MR479387
  22. [22] BALAS E. et PADBERG, M.W., On the set covering problem II. Opns. Res. 1974. Zbl0324.90045

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.