Hasse–Schmidt derivations, divided powers and differential smoothness
- [1] Universidad de Sevilla Facultad de Matemáticas Instituto de Matemáticas (IMUS) Departamento de Álgebra P.O. Box 1160 41080 Sevilla (Spain)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2979-3014
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNarváez Macarro, Luis. "Hasse–Schmidt derivations, divided powers and differential smoothness." Annales de l’institut Fourier 59.7 (2009): 2979-3014. <http://eudml.org/doc/10477>.
@article{NarváezMacarro2009,
abstract = {Let $k$ be a commutative ring, $A$ a commutative $k$-algebra and $D$ the filtered ring of $k$-linear differential operators of $A$. We prove that: (1) The graded ring $\rm \{gr\}\,D$ admits a canonical embedding $\theta $ into the graded dual of the symmetric algebra of the module $\Omega _\{A/k\}$ of differentials of $A$ over $k$, which has a canonical divided power structure. (2) There is a canonical morphism $\vartheta $ from the divided power algebra of the module of $k$-linear Hasse–Schmidt integrable derivations of $A$ to $\rm \{gr\}\,D$. (3) Morphisms $\theta $ and $\vartheta $ fit into a canonical commutative diagram.},
affiliation = {Universidad de Sevilla Facultad de Matemáticas Instituto de Matemáticas (IMUS) Departamento de Álgebra P.O. Box 1160 41080 Sevilla (Spain)},
author = {Narváez Macarro, Luis},
journal = {Annales de l’institut Fourier},
keywords = {Derivation; integrable derivation; differential operator; divided powers structure; derivation},
language = {eng},
number = {7},
pages = {2979-3014},
publisher = {Association des Annales de l’institut Fourier},
title = {Hasse–Schmidt derivations, divided powers and differential smoothness},
url = {http://eudml.org/doc/10477},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Narváez Macarro, Luis
TI - Hasse–Schmidt derivations, divided powers and differential smoothness
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2979
EP - 3014
AB - Let $k$ be a commutative ring, $A$ a commutative $k$-algebra and $D$ the filtered ring of $k$-linear differential operators of $A$. We prove that: (1) The graded ring $\rm {gr}\,D$ admits a canonical embedding $\theta $ into the graded dual of the symmetric algebra of the module $\Omega _{A/k}$ of differentials of $A$ over $k$, which has a canonical divided power structure. (2) There is a canonical morphism $\vartheta $ from the divided power algebra of the module of $k$-linear Hasse–Schmidt integrable derivations of $A$ to $\rm {gr}\,D$. (3) Morphisms $\theta $ and $\vartheta $ fit into a canonical commutative diagram.
LA - eng
KW - Derivation; integrable derivation; differential operator; divided powers structure; derivation
UR - http://eudml.org/doc/10477
ER -
References
top- J. Becker, Higher derivations and integral closure, Amer. J. Math. 100 (1978), 495-521 Zbl0386.13008MR501221
- P. Berthelot, A. Ogus, Notes on crystalline cohomology, 21 (1978), Princeton Univ. Press, Princeton, N.J. Zbl0383.14010MR491705
- D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, 150 (1995), Springer Verlag, New York Zbl0819.13001MR1322960
- M. Fernández-Lebrón, L. Narváez-Macarro, Hasse-Schmidt derivations and coefficient fields in positive characteristics, J. Algebra 265 (2003), 200-210 Zbl1099.13518MR1984906
- M. Gerstenhaber, The fundamental form of an inseparable extension, Trans. Amer. Math. Soc. 227 (1977), 165-184 Zbl0354.12023MR429861
- A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV: Étude locale des schémas et de morphismes de schémas (Quatrième Partie), 32 (1967), Press Univ. de France, Paris Zbl0153.22301
- H. Hasse, F. K. Schmidt, Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine U. Angew. Math. 177 (1937), 223-239 Zbl0017.10101
- D. Laksov, Divided powers, (2006)
- H. Matsumura, Integrable derivations, Nagoya Math. J. 87 (1982), 227-245 Zbl0458.13002MR676593
- H. Matsumura, Commutative Ring Theory, 8 (1986), Cambridge Univ. Press, Cambidge Zbl0603.13001MR879273
- N. Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. 80 (1963), 213-348 Zbl0117.02302MR161887
- N. Roby, Les algèbres à puissances divisées, Bull. Sci. Math. 89 (1965), 75-91 Zbl0145.04503MR193127
- W. N. Traves, Differential Operators and Nakai’s Conjecture, (1998)
- P. Vojta, Jets via Hasse–Schmidt derivations, Diophantine geometry 4 (2007), 335-361, Ed. Norm., Pisa Zbl1194.13027MR2349665
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.