Hasse–Schmidt derivations, divided powers and differential smoothness

Luis Narváez Macarro[1]

  • [1] Universidad de Sevilla Facultad de Matemáticas Instituto de Matemáticas (IMUS) Departamento de Álgebra P.O. Box 1160 41080 Sevilla (Spain)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 7, page 2979-3014
  • ISSN: 0373-0956

Abstract

top
Let k be a commutative ring, A a commutative k -algebra and D the filtered ring of k -linear differential operators of A . We prove that: (1) The graded ring gr D admits a canonical embedding θ into the graded dual of the symmetric algebra of the module Ω A / k of differentials of A over k , which has a canonical divided power structure. (2) There is a canonical morphism ϑ from the divided power algebra of the module of k -linear Hasse–Schmidt integrable derivations of A to gr D . (3) Morphisms θ and ϑ fit into a canonical commutative diagram.

How to cite

top

Narváez Macarro, Luis. "Hasse–Schmidt derivations, divided powers and differential smoothness." Annales de l’institut Fourier 59.7 (2009): 2979-3014. <http://eudml.org/doc/10477>.

@article{NarváezMacarro2009,
abstract = {Let $k$ be a commutative ring, $A$ a commutative $k$-algebra and $D$ the filtered ring of $k$-linear differential operators of $A$. We prove that: (1) The graded ring $\rm \{gr\}\,D$ admits a canonical embedding $\theta $ into the graded dual of the symmetric algebra of the module $\Omega _\{A/k\}$ of differentials of $A$ over $k$, which has a canonical divided power structure. (2) There is a canonical morphism $\vartheta $ from the divided power algebra of the module of $k$-linear Hasse–Schmidt integrable derivations of $A$ to $\rm \{gr\}\,D$. (3) Morphisms $\theta $ and $\vartheta $ fit into a canonical commutative diagram.},
affiliation = {Universidad de Sevilla Facultad de Matemáticas Instituto de Matemáticas (IMUS) Departamento de Álgebra P.O. Box 1160 41080 Sevilla (Spain)},
author = {Narváez Macarro, Luis},
journal = {Annales de l’institut Fourier},
keywords = {Derivation; integrable derivation; differential operator; divided powers structure; derivation},
language = {eng},
number = {7},
pages = {2979-3014},
publisher = {Association des Annales de l’institut Fourier},
title = {Hasse–Schmidt derivations, divided powers and differential smoothness},
url = {http://eudml.org/doc/10477},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Narváez Macarro, Luis
TI - Hasse–Schmidt derivations, divided powers and differential smoothness
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2979
EP - 3014
AB - Let $k$ be a commutative ring, $A$ a commutative $k$-algebra and $D$ the filtered ring of $k$-linear differential operators of $A$. We prove that: (1) The graded ring $\rm {gr}\,D$ admits a canonical embedding $\theta $ into the graded dual of the symmetric algebra of the module $\Omega _{A/k}$ of differentials of $A$ over $k$, which has a canonical divided power structure. (2) There is a canonical morphism $\vartheta $ from the divided power algebra of the module of $k$-linear Hasse–Schmidt integrable derivations of $A$ to $\rm {gr}\,D$. (3) Morphisms $\theta $ and $\vartheta $ fit into a canonical commutative diagram.
LA - eng
KW - Derivation; integrable derivation; differential operator; divided powers structure; derivation
UR - http://eudml.org/doc/10477
ER -

References

top
  1. J. Becker, Higher derivations and integral closure, Amer. J. Math. 100 (1978), 495-521 Zbl0386.13008MR501221
  2. P. Berthelot, A. Ogus, Notes on crystalline cohomology, 21 (1978), Princeton Univ. Press, Princeton, N.J. Zbl0383.14010MR491705
  3. D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, 150 (1995), Springer Verlag, New York Zbl0819.13001MR1322960
  4. M. Fernández-Lebrón, L. Narváez-Macarro, Hasse-Schmidt derivations and coefficient fields in positive characteristics, J. Algebra 265 (2003), 200-210 Zbl1099.13518MR1984906
  5. M. Gerstenhaber, The fundamental form of an inseparable extension, Trans. Amer. Math. Soc. 227 (1977), 165-184 Zbl0354.12023MR429861
  6. A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV: Étude locale des schémas et de morphismes de schémas (Quatrième Partie), 32 (1967), Press Univ. de France, Paris Zbl0153.22301
  7. H. Hasse, F. K. Schmidt, Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine U. Angew. Math. 177 (1937), 223-239 Zbl0017.10101
  8. D. Laksov, Divided powers, (2006) 
  9. H. Matsumura, Integrable derivations, Nagoya Math. J. 87 (1982), 227-245 Zbl0458.13002MR676593
  10. H. Matsumura, Commutative Ring Theory, 8 (1986), Cambridge Univ. Press, Cambidge Zbl0603.13001MR879273
  11. N. Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. 80 (1963), 213-348 Zbl0117.02302MR161887
  12. N. Roby, Les algèbres à puissances divisées, Bull. Sci. Math. 89 (1965), 75-91 Zbl0145.04503MR193127
  13. W. N. Traves, Differential Operators and Nakai’s Conjecture, (1998) 
  14. P. Vojta, Jets via Hasse–Schmidt derivations, Diophantine geometry 4 (2007), 335-361, Ed. Norm., Pisa Zbl1194.13027MR2349665

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.