Cale Bases in Algebraic Orders
- [1] Laboratoire de Mathématiques Pures Université Blaise Pascal Les Cézeaux 63177 AUBIERE CEDEX FRANCE
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 1, page 117-131
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topPicavet-L’Hermitte, Martine. "Cale Bases in Algebraic Orders." Annales mathématiques Blaise Pascal 10.1 (2003): 117-131. <http://eudml.org/doc/10480>.
@article{Picavet2003,
abstract = {Let $R$ be a non-maximal order in a finite algebraic number field with integral closure $\overline\{R\}$. Although $R$ is not a unique factorization domain, we obtain a positive integer $N$ and a family $\{\mathcal\{Q\}\}$ (called a Cale basis) of primary irreducible elements of $R$ such that $x^N$ has a unique factorization into elements of $\{\mathcal\{Q\}\}$ for each $x\in R$ coprime with the conductor of $R$. Moreover, this property holds for each nonzero $x\in R$ when the natural map $\mathrm\{Spec\}(\overline\{R\})\rightarrow \mathrm\{Spec\}(R)$ is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.},
affiliation = {Laboratoire de Mathématiques Pures Université Blaise Pascal Les Cézeaux 63177 AUBIERE CEDEX FRANCE},
author = {Picavet-L’Hermitte, Martine},
journal = {Annales mathématiques Blaise Pascal},
keywords = {orders; Cale bases; factorization},
language = {eng},
month = {1},
number = {1},
pages = {117-131},
publisher = {Annales mathématiques Blaise Pascal},
title = {Cale Bases in Algebraic Orders},
url = {http://eudml.org/doc/10480},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Picavet-L’Hermitte, Martine
TI - Cale Bases in Algebraic Orders
JO - Annales mathématiques Blaise Pascal
DA - 2003/1//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 1
SP - 117
EP - 131
AB - Let $R$ be a non-maximal order in a finite algebraic number field with integral closure $\overline{R}$. Although $R$ is not a unique factorization domain, we obtain a positive integer $N$ and a family ${\mathcal{Q}}$ (called a Cale basis) of primary irreducible elements of $R$ such that $x^N$ has a unique factorization into elements of ${\mathcal{Q}}$ for each $x\in R$ coprime with the conductor of $R$. Moreover, this property holds for each nonzero $x\in R$ when the natural map $\mathrm{Spec}(\overline{R})\rightarrow \mathrm{Spec}(R)$ is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.
LA - eng
KW - orders; Cale bases; factorization
UR - http://eudml.org/doc/10480
ER -
References
top- D. D. Anderson, K. R. Knopp, R. L. Lewin, Almost Bézout domains II, J. Algebra 167 (1994), 547-556 Zbl0821.13006MR1287059
- D. D. Anderson, L. A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141-154 Zbl0665.13004MR963540
- D. D. Anderson, M. Zafrullah, Almost Bézout domains, J. Algebra 142 (1991), 285-309 Zbl0749.13013MR1127065
- S.T. Chapman, F. Halter-Koch, U. Krause, Inside factorial monoids and integral domains, J. Algebra 252 (2002), 350-375 Zbl1087.13510MR1925142
- T. Dumitrescu, Y. Lequain, J. L. Mott, M. Zafrullah, Almost GCD domains of finite -character, J. Algebra 245 (2001), 161-181 Zbl1094.13537MR1868187
- H. M. Edwards, Fermat’s last Theorem, (1977), Springer GTM, Berlin Zbl0355.12001MR616635
- A. Faisant, Interprétation factorielle du nombre de classes dans les ordres des corps quadratiques, Ann. Math. Blaise Pascal 7 (2) (2000), 13-18 Zbl1013.11071MR1815164
- A. Geroldinger, F. Halter-Koch, J. Kaczorowski, Non-unique factorizations in orders of global fields, J. Reine Angew. Math. 459 (1995), 89-118 Zbl0812.11061MR1319518
- M. Picavet-L’Hermitte, Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis (2000), 365-390, Halter-KochF.F. Zbl0971.13016MR1770474
- M. Picavet-L’Hermitte, Weakly factorial quadratic orders, Arab. J. Sci. and Engineering 26 (2001), 171-186 Zbl1271.13003MR1843467
- M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), 29-62 Zbl0587.13010MR788672
- P. Zanardo, U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc. 115 (1994), 379-391 Zbl0828.11068MR1269926
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.