Solving MDP functional equations by lexicographic optimization

Paul J. Schweitzer

RAIRO - Operations Research - Recherche Opérationnelle (1982)

  • Volume: 16, Issue: 2, page 91-98
  • ISSN: 0399-0559

How to cite

top

Schweitzer, Paul J.. "Solving MDP functional equations by lexicographic optimization." RAIRO - Operations Research - Recherche Opérationnelle 16.2 (1982): 91-98. <http://eudml.org/doc/104808>.

@article{Schweitzer1982,
author = {Schweitzer, Paul J.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {lexicographic optimization; optimal value-vector; discounted infinite horizon semi-Markovian decision process; monotone contraction operator; existence proof; Howard's policy-iteration algorithm; coupled functional equations; higher-order optimality criteria; convergence analysis},
language = {eng},
number = {2},
pages = {91-98},
publisher = {EDP-Sciences},
title = {Solving MDP functional equations by lexicographic optimization},
url = {http://eudml.org/doc/104808},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Schweitzer, Paul J.
TI - Solving MDP functional equations by lexicographic optimization
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1982
PB - EDP-Sciences
VL - 16
IS - 2
SP - 91
EP - 98
LA - eng
KW - lexicographic optimization; optimal value-vector; discounted infinite horizon semi-Markovian decision process; monotone contraction operator; existence proof; Howard's policy-iteration algorithm; coupled functional equations; higher-order optimality criteria; convergence analysis
UR - http://eudml.org/doc/104808
ER -

References

top
  1. 1. R. G. BARTLE, The Elements of Real Analysis, Wiley, New York, second edition, 1976. Zbl0309.26003MR393369
  2. 2. R. BELLMAN, Functional Equations in the Theory of Dynamic Programming V. Positivity and Quasi-Linearity, Proc. Nat. Acad. Sc. U.S.A., Vol. 41, 1955, pp. 743-746. Zbl0066.13802MR74693
  3. 3. I. BROSH, E. SHLIFER and P. SCHWEITZER, Generalized Markovian Decision Processes, Zeitschrift fur Operations Research, Vol. 21, 1977, pp. 173-186. Zbl0417.90087MR456510
  4. 4. E. DENARDO, Contraction Mappings in the Theory Underlying Dynamic Programming, S.I.A.M. Rev., Vol. 9, 1967, pp. 165-177. Zbl0154.45101MR215608
  5. 5. E. DENARDO and B. Fox, Multichain Markov Renewal Programs, S.I.A.M. J. Appl. Math., Vol. 16, 1968, pp. 468-487. Zbl0201.19303MR234721
  6. 6. E. V. DENARDO, Computing a Bias-optimal Policy in a Discrete-time Markov Decision Problem, Oper. Res., Vol. 18, 1970, pp. 279-289. Zbl0195.21101MR275865
  7. 7. E. V. DENARDO, Markov Renewal Programs with Small Interest Rates, Ann. Math. Statist., Vol. 42, 1971, pp. 477-496. Zbl0234.60106MR290784
  8. 8. A. FEDERGRUEN and P. J. SCHWEITZER, A Fixed Point Approach to Undiscounted Markov Renewal Programs, Working Paper 8024, Graduate School of ManagementUniversity of Rochester, Rochester, New York, 1980; Also Columbia University, Graduate School of Business Working Paper 351 A, 1980 (Revised 1981). Zbl0558.90099
  9. 9. R. C. GRINOLD, A Generalized Discrete Dynamic Programming Model, Management Science, Vol. 20, 1974, pp. 1092-1103. Zbl0326.90066MR398531
  10. 10. R. A. HOWARD, Dynamic Programming and Markov Processes, Wiley, New York, 1960. Zbl0091.16001MR118514
  11. 11. W. JEWELL, Markov Renewal Programming, Operations Research, Vol. 11, 1963, pp. 938-971. Zbl0126.15905MR163374
  12. 12. J. L. KELLEY, General Topology, Van Nostrand, Princeton, New Jersey, 1955. Zbl0066.16604MR70144
  13. 13. G. J. KOEHLER, A. B. WHINSTON and G. P. WRIGHT, Optimization Over Leontief Substitution Systems, North-Holland, Amsterdam, 1975. Zbl0316.90035MR416562
  14. 14. B. L. MILLER and A. F. VEINOTT Jr., Discrete Dynamic Programming with a Small Interest Rate, Ann. Math. Statist., Vol. 40, 1969, 366-370. Zbl0175.47302MR238561
  15. 15. S. M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, 1970. Zbl0213.19101MR264792
  16. 16. P. SCHWEITZER, Perturbation Theory and Finite Markov Chains, J. Appl. Prob., Vol. 5, 1968, pp. 401-413. Zbl0196.19803MR234527
  17. 17. P. J. SCHWEITZER and B. GAVISH, An Optimality Principle for Markovian Decision Processes, J. Math. Anal. and Appl. Vol. 54, 1976, pp. 173-184. Zbl0332.90045MR424259
  18. 18. S. S. SHEU and K.-J. FARN, Sufficient Condition for the Existence of a Stationary 1- Optimal Plan in Compact Action Markovian Decision Processes, Recent Developments in Markov Decision Processes, R. HARTLEY, L. C. THOMAS, D. J.WHITE, Eds., Academic Press, New York, 1980, pp. 111-126. 
  19. 19. A. F. Jr. VEINOTT, On Finding Optimal Policies in Discrete Dynamic Programming with No Discounting, Ann. Math. Statist., Vol. 37, 1966, pp. 1284-1294. Zbl0149.16301MR208992
  20. 20. A. F. Jr. VEINOTT, Discrete Dynamic Programming with Sensitive Discount Optimality Criteria, Ann. Math. Statist., Vol. 40, 1969, pp. 1635-1660. Zbl0183.49102MR256712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.