An upper bound for the shortest hamiltonian path in the symmetric euclidean case
RAIRO - Operations Research - Recherche Opérationnelle (1983)
- Volume: 17, Issue: 3, page 297-306
- ISSN: 0399-0559
Access Full Article
topHow to cite
topReferences
top- 1. M. BEHZAD, G. CHARTRAND and L. LESNIAK-FOSTER, Graphs and Digraphs, Prindle, Weber and Schmidt, Boston, Massachusetts, 1979. Zbl0403.05027MR525578
- 2. J. A. BONDY and U. S. R. MURTY, Graph Theory with Applications, The Macmillan Press, London, 1977. Zbl1226.05083MR411988
- 3. N. CHRISTOFIDES, The Shortest Hamiltonian Chain of a Graph, S.I.A.M. J. Appl. Math., Vol. 19, 1970, pp. 689-696. Zbl0214.23403MR274332
- 4. N. CHRISTOFIDES, The Travelling Salesman Problem, CombinatoriaÏ Optimization, John Wiley, 1979, pp. 131-149. Zbl0415.90057
- 5. M. HELD and R. M. KARP, The Travelling-Salesman Problem and Minimum Spanning Trees, Operations Research, Vol. 18, 1970, pp. 1138-1162. Zbl0226.90047MR278710
- 6. D. J. ROSENKRANTZ, R. E. STEARNS and P. M. LEWIS, An Analysis of Several Heuristics for the Traveling Salesman Problem, S.I.A.M. J. Comput., Vol. 6, No. 3, 1977, pp. 563-581. Zbl0364.90104MR459617
- 7. I. TOMESCU, Un algorithme pour l'obtention d'une chaîne hamiltonienne en partant de l'arbre minimal d'un graphe, R.A.I.R.O., V-3, Vol. 9, 1975, pp. 5-12. Zbl0322.05129MR441774