Plus court chemin avec contraintes d'horaires

Jacques Desrosiers; Paul Pelletier; François Soumis

RAIRO - Operations Research - Recherche Opérationnelle (1983)

  • Volume: 17, Issue: 4, page 357-377
  • ISSN: 0399-0559

How to cite

top

Desrosiers, Jacques, Pelletier, Paul, and Soumis, François. "Plus court chemin avec contraintes d'horaires." RAIRO - Operations Research - Recherche Opérationnelle 17.4 (1983): 357-377. <http://eudml.org/doc/104840>.

@article{Desrosiers1983,
author = {Desrosiers, Jacques, Pelletier, Paul, Soumis, François},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {shortest path; vehicle routing; scheduling constraints},
language = {fre},
number = {4},
pages = {357-377},
publisher = {EDP-Sciences},
title = {Plus court chemin avec contraintes d'horaires},
url = {http://eudml.org/doc/104840},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Desrosiers, Jacques
AU - Pelletier, Paul
AU - Soumis, François
TI - Plus court chemin avec contraintes d'horaires
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1983
PB - EDP-Sciences
VL - 17
IS - 4
SP - 357
EP - 377
LA - fre
KW - shortest path; vehicle routing; scheduling constraints
UR - http://eudml.org/doc/104840
ER -

References

top
  1. 1. R. E. BELLMAN, On a Routing Problem, Quart. Appl. Math., 16, 1958, p. 87-90. Zbl0081.14403MR102435
  2. 2. J. DESROSIERS, F. SOUMIS et M. DESROCHERS, Routing with Time Windows by Column Generation, Rapport de recherche G83-15, École des Hautes Études Commerciales, Université de Montréal, 1983 (soumis pour publication à NETWORKS). Zbl0571.90088
  3. 3. E. W. DIJKSTRA, A Note on Two Problems in Connexion with Graph, Numer, Math., vol. 1, 1959, p. 269-271. Zbl0092.16002MR107609
  4. 4. L. R. Jr FORD : Network Flow Theory, The Rand Corporation, vol. 293, 1956. 
  5. 5. G. Y. HANDLER et I. ZANG, A Dual Algorithm for the Constrained Shortest Path Problem, Networks, vol. 10, 1980, p. 293-310. Zbl0453.68033MR597270
  6. 6. H. C. JOKSCH, The Shortest Route Problem with Constraints, J. Math. Anal. Appl., vol. 14, 1966, p. 191-197. Zbl0135.20506MR192923
  7. 7. C. E. MILLER, A. W. TUCKER et R. A. ZEMLIN, Integer Programming Formulation of Travelling Salesman Problems, ACM, vol. 7, 1960, p. 326-329. Zbl0100.15101MR149964
  8. 8. M. MINOUX, Plus court chemin avec contraintes : algorithmes et applications, Annales des télécommunications, tome 30, 1975, p. 383-394. Zbl0347.90065
  9. 9. E. F. MOORE, The Shor test Path Trough a Maze (Proc. of international Symposium on the Theory of Switching, Part II, Apr. 2-5, 1957, Harvard University Press, Cambridge, Mass., 1959). MR114710
  10. 10. S. PALLOTTINO, Adaptation de l'algorithme de D'Esopo-Pape pour la détermination de tous les chemins les plus courts : améliorations et simplifications, publication n° 136, Centre de recherche sur les transports, Université de Montréal, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.