# On Strong Going-Between, Going-Down, And Their Universalizations, II

David E. Dobbs^{[1]}; Gabriel Picavet^{[2]}

- [1] University of Tennessee Department of Mathematics Knoxville, Tennessee 37996-1300 U.S.A.
- [2] Université Blaise Pascal Laboratoire de Mathématiques Pures 63177 Aubière Cedex FRANCE

Annales mathématiques Blaise Pascal (2003)

- Volume: 10, Issue: 2, page 245-260
- ISSN: 1259-1734

## Access Full Article

top## Abstract

top## How to cite

topDobbs, David E., and Picavet, Gabriel. "On Strong Going-Between, Going-Down, And Their Universalizations, II." Annales mathématiques Blaise Pascal 10.2 (2003): 245-260. <http://eudml.org/doc/10488>.

@article{Dobbs2003,

abstract = {We consider analogies between the logically independent properties of strong going-between (SGB) and going-down (GD), as well as analogies between the universalizations of these properties. Transfer results are obtained for the (universally) SGB property relative to pullbacks and Nagata ring constructions. It is shown that if $A \subseteq B$ are domains such that $A$ is an LFD universally going-down domain and $B$ is algebraic over $A$, then the inclusion map $A[X_1, \, \dots , \, X_n] \hookrightarrow B[X_1, \, \dots , \, X_n]$ satisfies GB for each $n \ge 0$. However, for any nonzero ring $A$ and indeterminate $X$ over $A$, the inclusion map $A \hookrightarrow A[X]$ is not universally (S)GB.},

affiliation = {University of Tennessee Department of Mathematics Knoxville, Tennessee 37996-1300 U.S.A.; Université Blaise Pascal Laboratoire de Mathématiques Pures 63177 Aubière Cedex FRANCE},

author = {Dobbs, David E., Picavet, Gabriel},

journal = {Annales mathématiques Blaise Pascal},

keywords = {strongly going-between domain; going-down domain; universalization; pullback; Nagata ring},

language = {eng},

month = {7},

number = {2},

pages = {245-260},

publisher = {Annales mathématiques Blaise Pascal},

title = {On Strong Going-Between, Going-Down, And Their Universalizations, II},

url = {http://eudml.org/doc/10488},

volume = {10},

year = {2003},

}

TY - JOUR

AU - Dobbs, David E.

AU - Picavet, Gabriel

TI - On Strong Going-Between, Going-Down, And Their Universalizations, II

JO - Annales mathématiques Blaise Pascal

DA - 2003/7//

PB - Annales mathématiques Blaise Pascal

VL - 10

IS - 2

SP - 245

EP - 260

AB - We consider analogies between the logically independent properties of strong going-between (SGB) and going-down (GD), as well as analogies between the universalizations of these properties. Transfer results are obtained for the (universally) SGB property relative to pullbacks and Nagata ring constructions. It is shown that if $A \subseteq B$ are domains such that $A$ is an LFD universally going-down domain and $B$ is algebraic over $A$, then the inclusion map $A[X_1, \, \dots , \, X_n] \hookrightarrow B[X_1, \, \dots , \, X_n]$ satisfies GB for each $n \ge 0$. However, for any nonzero ring $A$ and indeterminate $X$ over $A$, the inclusion map $A \hookrightarrow A[X]$ is not universally (S)GB.

LA - eng

KW - strongly going-between domain; going-down domain; universalization; pullback; Nagata ring

UR - http://eudml.org/doc/10488

ER -

## References

top- D. F. Anderson, D. E. Dobbs, M. Fontana, On treed Nagata rings, J. Pure Appl. Algebra 61 (1989), 107-122 Zbl0691.13005MR1025917
- N. Bourbaki, Commutative Algebra, (1972), Addison-Wesley, Reading Zbl0279.13001
- A. Bouvier, D. E. Dobbs, M. Fontana, Universally catenarian integral domains, Adv. in Math. 72 (1988), 211-238 Zbl0695.13014MR972761
- D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra 1 (1974), 439-458 Zbl0285.13001MR364225
- D. E. Dobbs, Going-down rings with zero-divisors, Houston J. Math. 23 (1997), 1-12 Zbl0896.13006MR1688682
- D. E. Dobbs, M. Fontana, Universally going-down homomorphisms of commutative rings, J. Algebra 90 (1984), 410-429 Zbl0544.13004MR760019
- D. E. Dobbs, M. Fontana, Universally going-down integral domains, Arch. Math. 42 (1984), 426-429 Zbl0526.13007MR756695
- D. E. Dobbs, I. J. Papick, On going-down for simple overrings, III, Proc. Amer. Math. Soc. 54 (1976), 35-38 Zbl0285.13002MR417153
- D. E. Dobbs, G. Picavet, On strong going-between, going-down, and their universalizations, Rings, Modules, Algebras and Abelian Groups (to appear), Dekker, New York Zbl1069.13008MR2050708
- M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123 (1980), 331-355 Zbl0443.13001MR581935
- M. Fontana, J. A. Huckaba, I. J. Papick, Prüfer Domains, (1997), Dekker, New York Zbl0861.13006MR1413297
- R. Gilmer, Multiplicative Ideal Theory, (1972), Dekker, New York Zbl0248.13001MR427289
- A. Grothendieck, J. A. Dieudonné, Eléments de Géométrie Algébrique, (1971), Springer-Verlag, Berlin Zbl0203.23301
- M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60 Zbl0184.29401MR251026
- I. Kaplansky, Commutative Rings, rev. ed., (1974), Univ. Chicago Press, Chicago Zbl0296.13001
- W. J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra 25 (1973), 419-434 Zbl0266.13010MR314811
- S. McAdam, Going down in polynomial rings, Can. J. Math. 23 (1971), 704-711 Zbl0223.13006MR280482
- G. Picavet, Universally going-down rings, $1$-split rings and absolute integral closure, Comm. Algebra 31 (2003), 4655-4685 Zbl1082.13502MR1998022
- L. J. Ratliff, Jr., Going-between rings and contractions of saturated chains of prime ideals, Rocky Mountain J. Math. 7 (1977), 777-787 Zbl0372.13008MR447207
- L. J. Ratliff, Jr., $A\left(X\right)$ and GB-Noetherian rings, Rocky Mountain J. Math. 9 (1979), 337-353 Zbl0426.13006MR519947

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.