Two-point approximations for activity times in PERT networks
RAIRO - Operations Research - Recherche Opérationnelle (1985)
- Volume: 19, Issue: 3, page 301-313
- ISSN: 0399-0559
Access Full Article
topHow to cite
topKamburowski, Jerzy. "Two-point approximations for activity times in PERT networks." RAIRO - Operations Research - Recherche Opérationnelle 19.3 (1985): 301-313. <http://eudml.org/doc/104886>.
@article{Kamburowski1985,
author = {Kamburowski, Jerzy},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {convex majorization; expected completion time; PERT networks; random activity durations; upper bounds; approximations},
language = {eng},
number = {3},
pages = {301-313},
publisher = {EDP-Sciences},
title = {Two-point approximations for activity times in PERT networks},
url = {http://eudml.org/doc/104886},
volume = {19},
year = {1985},
}
TY - JOUR
AU - Kamburowski, Jerzy
TI - Two-point approximations for activity times in PERT networks
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1985
PB - EDP-Sciences
VL - 19
IS - 3
SP - 301
EP - 313
LA - eng
KW - convex majorization; expected completion time; PERT networks; random activity durations; upper bounds; approximations
UR - http://eudml.org/doc/104886
ER -
References
top- 1. R. E. BARLOW and F. PROSHAN, Statistical Theory of Reliability and Life Testing, Holt, New York, 1975. Zbl0379.62080MR438625
- 2. S. A. BESSLER and A. F. VEINOTT, Optimal Policy for a Dynamic Multi-Echelon Inventory Model, Naval Res. Logist Quart., Vol. 14, No. 4, 1966, p. 355-389. Zbl0154.19901MR209010
- 3. S. KARLIN and A. NOVIKOFF, Generalized Convex Inequalities, Pacific J. Math, Vol. 13, 1963, p. 1251-1279. Zbl0126.28102MR156927
- 4. G. B. KLEINDORFER, Bounding Distributions for a Stochastic Acyclic Network, Opns.Res., Vol 10, No. 7, 1971, p. 1586-1601. Zbl0247.90026MR300762
- 5. J. J. MARTIN, Distribution of the Time through a Directed Acyclic Network, Opns. Res., Vol. 13, No. 1, 1965p. 46-66. Zbl0137.39302MR191650
- 6. J.-P. MELIN, Proposition d'une solution approchée pour l'étude du maximum de plusieurs variables aléatoires, R.A.I.R.O., Rech. Op., Vol. 17, No. 2, 1983, p. 175-191. Zbl0519.90045
- 7. J. M. TAYLOR, Comparisons of Certain Distribution Functions, Math. Operations forsch. Statist., Vol. 14, No. 3, 1983p. 397-408. Zbl0526.62014MR709871
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.