Solving a family of permutation problems on 0-1 matrices

Gilbert Laporte

RAIRO - Operations Research - Recherche Opérationnelle (1987)

  • Volume: 21, Issue: 1, page 65-85
  • ISSN: 0399-0559

How to cite

top

Laporte, Gilbert. "Solving a family of permutation problems on 0-1 matrices." RAIRO - Operations Research - Recherche Opérationnelle 21.1 (1987): 65-85. <http://eudml.org/doc/104915>.

@article{Laporte1987,
author = {Laporte, Gilbert},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {1},
pages = {65-85},
publisher = {EDP-Sciences},
title = {Solving a family of permutation problems on 0-1 matrices},
url = {http://eudml.org/doc/104915},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Laporte, Gilbert
TI - Solving a family of permutation problems on 0-1 matrices
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1987
PB - EDP-Sciences
VL - 21
IS - 1
SP - 65
EP - 85
LA - eng
UR - http://eudml.org/doc/104915
ER -

References

top
  1. 1. R. M. ADELSON, G. LAPORTE et J. M. NORMAN, A Dynamic Programming Formulation with Diverse Applications, Operational Research Quarterly, Vol. 27, 1976, pp. 119-121. Zbl0319.90070
  2. 2. J. C. BARTHOLDI III, J. B. ORLIN et H. D. RATLIFF, Cyclic Scheduling via Integer Programs with Circular Ones, Operations Research, Vol. 28, 1980, pp. 1074-1085. Zbl0451.90075MR589671
  3. 3. G. CARPANETO et P. TOTH, Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem, Management Science, Vol. 26, 1980, pp. 736-743. Zbl0445.90089MR591295
  4. 4. G. B. DANTZIG, On the Significance of Solving Linear Programming Problems with Some Integer Variables, Econometrica, Vol. 28, 1960, pp.30-44. Zbl0089.16101MR112748
  5. 5. P. DEMPSEY et M. BAUMHOFF, The Statistical Use of Artifact Distributions to Establish Chronological Sequence, American Antiquity, Vol. 28, 1963, pp. 496-509. 
  6. 6. J. E. DORAN, Computer Analysis of Data from the La Tène Cemetery at Münsingen-Rain, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al Eds., Edinburgh University Press, 1971, pp. 422-431. 
  7. 7. J. E. DORAN et S. POWELL, Solving a Combinatorial Problem Encountered in Archaeology, Some Research Applications of the Computer, Atlas Computer Laboratory, 1972. 
  8. 8. L. R. FORD et D. R. FULKERSON, Flows in Networks, Princeton University Press, 1962. Zbl1216.05047MR159700
  9. 9. D. R. FULKERSON et O. A. GROSS, Incidence Matrices and Interval Graphs, Pacific Journal of Mathematics Vol. 15, 1965, pp. 835-855. Zbl0132.21001MR186421
  10. 10. B. L. GOLDEN et W. R. STEWART, Empirical Analysis of Heuristics, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E. L. LAWLER et al Eds., Wiley, 1985, pp. 207-250. Zbl0591.90090MR811474
  11. 11. K. GOLDMANN, Some Archaeological Criteria for Chronological Seriation, Mathematics in the Archaeological and Historical Sciences, F. R, HODSON et al. Eds. Edinburgh University Press, 1971, pp. 202-208. 
  12. 12. M. D. GRIGORIADIS et T. Hsu, RNET-The Rutgers Minimum Cost Network Flow Subroutines, Rutgers University, New-Brunswick, N.J., 1979. 
  13. 13. F. R. HODSON, The La Tène Cemetery at Münsingen-Rain, Stämpfli, 1968. 
  14. 14. F. R. HODSON, D. G. KENDALL et P. TAUTU, Mathematics in the Archaeological and Historical Sciences, Edinburgh University Press, 1971. Zbl0254.00020
  15. 15. F. HOLE et M. SHAW, Computer Analysis of Chronological Seriation, Rice University Studies, Vol. 53, 1967. 
  16. 16. L. J. HUBERT, Some Applications of Graph Theory and Reiated Non-Metric Techniques to Problems of Approximate Seriation: the Case of Symmetric Proximity Measures, British Journal of Mathematical and Statistical Psychology, Vol. 27, 1974, pp. 133-153. Zbl0285.92029
  17. 17. L. J. HUBERT et F. B. BAKER, Applications of Combinatorial Programming to Data Analysis: the Travelling Salesman Problem and Related Problems, Psychometrika, Vol. 43, 1978, pp. 81-91. MR525910
  18. 18. D. G. KENDALL, Some Problems and Methods in Statistical Archaeology, World Archaeology, Vol. 1, 1969, pp. 68-76. 
  19. 19. I. KIVU-SCULY, On the Hole-Show Method of Permutation Search, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al. Eds., Edinburgh University Press, 1971, pp. 253-254. 
  20. 20. R. S. KUZARA, R. G. MEAD et K. A. DIXON, Seriation of Anthropological Data: a Computer Program for Matrix Ordering, American Anthropologist, Vol. 68, 1966, pp. 1442-1455. 
  21. 21. G. LAPORTE, A Comparison of Two Norms in Archaeological Seriation, Journal of Archaeological Science, Vol. 3, 1976, pp. 249-255. 
  22. 22. G. LAPORTE et S. DESROCHES, The Problem of Assigning Students to Course Sections in a Large Engineering School, Computers and Operations Research, Vol. 13, 1986, pp. 387-394. 
  23. 23. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN et D. B. SHMOYS, The Travelling Salesman Problem. A Guided Tour of Combinatorial 0ptimization, Wiley, 1985. Zbl0562.00014MR811467
  24. 24. J. K. LENSTRA et A. H. G. RINNOOY KAN, Some Applications of the Travelling Salesman Problem, Operational Research Quarterly, Vol. 26, 1975, pp. 717-734. Zbl0308.90044
  25. 25. S. LIN, Computer Solution of the Travelling Salesman Problem, Bell System Technical Journal, Vol. 44, 1965, pp. 2245-2269. Zbl0136.14705MR189224
  26. 26. J. D. C. LITTLE, K. G. MURPHY, D. W. SWEENEY et C. KAREL, An Algorithm for the Travelling Salesman Problem, Operations Research, Vol. 11, 1963, pp. 972-989. Zbl0161.39305
  27. 27. W. H. MARQUARDT, Advances in Archaeological Seriation, Advances in Archaeological Method and Theory, Vol. 1, M. B. SCHIFFER Ed., Academic Press, 1978, pp. 257-314. 
  28. 28. B. J. MEGGERS et C. EVANS, Archaeological Investigation in the Mouth of the Amazon, Bulletin 167, Smithsonian Institute, Bureau of American Ethnology, 1957. 
  29. 29. P. MILIOTIS, Integer Programming Approaches to the Travelling Salesman Problem, Mathematical Programming, Vol 10, 1976, pp. 367-378. Zbl0337.90041MR441337
  30. 30. T. A. J. NICHOLSON, Permutation Programming and its Applications, Ph.D. Thesis, University of London, 1970. 
  31. 31. J. M. NORMAN, Elementary Dynamic Programming, Crane, Russak & Company, Inc., New York, 1977. Zbl0338.90052MR401171
  32. 32. I. OR, Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Regional Blood Banking, Ph.D. Thesis, Northwestern University, Evanston, IL, 1976. 
  33. 33. W. S. ROBINSON, Method for Chronologically Ordering Archaeological Deposits, American Antiquity, Vol. 16, 1951, pp. 293-301. 
  34. 34. A. SHUCHAT, Matrix and Network Models in Archaeology, Mathematics Magazine, Vol. 57, 1984, pp. 3-14. Zbl0532.90097MR729033
  35. 35. R. SIBSON, Some Thoughts on Sequencing Methods, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al Eds., Edinburgh University Press, 1971, pp. 263-266. 
  36. 36. A. STEFAN, Applications of Mathematical Methods to Epigraphy, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al. Eds., Edinburgh University Press, 1971, pp. 267-275. 
  37. 37. J. TELGEN, How to Schedule Meetings with a Travelling Salesman Q & D, and Why we Didn't, Interfaces, Vol. 15, 1985, pp. 89-93. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.