Standard Subalgebras of Semisimple Lie Algebras and Computer-Aided for Enumeration

B. Es Saadi[1]; Yu. Khakimdjanov[1]; A. Makhlouf[1]

  • [1] Université de Haute Alsace Laboratoire de Mathématiques et Applications 4, rue des Frères Lumière 68093 Mulhouse Cedex FRANCE

Annales mathématiques Blaise Pascal (2003)

  • Volume: 10, Issue: 2, page 315-326
  • ISSN: 1259-1734

Abstract

top
The aim of this work is to enumerate the standard subalgebras of a semisimple Lie algebra. The computations are based on the approach developed by Yu. Khakimdjanov in 1974. In this paper, we give a general formula for the number of standard subalgebras not necessarly nilpotent of a semisimple Lie algebra of type A p and the exceptional semisimple Lie algebras. With computer aided, we enumerate this number for the other types of small rank. Therefore, We deduce the number in the nilpotent case and describe a family of complete nilpotent standard subalgebras, these algebras are the nilradical of their normalizer.

How to cite

top

Es Saadi, B., Khakimdjanov, Yu., and Makhlouf, A.. "Standard Subalgebras of Semisimple Lie Algebras and Computer-Aided for Enumeration." Annales mathématiques Blaise Pascal 10.2 (2003): 315-326. <http://eudml.org/doc/10493>.

@article{EsSaadi2003,
abstract = {The aim of this work is to enumerate the standard subalgebras of a semisimple Lie algebra. The computations are based on the approach developed by Yu. Khakimdjanov in 1974. In this paper, we give a general formula for the number of standard subalgebras not necessarly nilpotent of a semisimple Lie algebra of type A$_\{p\}$ and the exceptional semisimple Lie algebras. With computer aided, we enumerate this number for the other types of small rank. Therefore, We deduce the number in the nilpotent case and describe a family of complete nilpotent standard subalgebras, these algebras are the nilradical of their normalizer.},
affiliation = {Université de Haute Alsace Laboratoire de Mathématiques et Applications 4, rue des Frères Lumière 68093 Mulhouse Cedex FRANCE; Université de Haute Alsace Laboratoire de Mathématiques et Applications 4, rue des Frères Lumière 68093 Mulhouse Cedex FRANCE; Université de Haute Alsace Laboratoire de Mathématiques et Applications 4, rue des Frères Lumière 68093 Mulhouse Cedex FRANCE},
author = {Es Saadi, B., Khakimdjanov, Yu., Makhlouf, A.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {parabolic subalgebra; conjugacy classes},
language = {eng},
month = {7},
number = {2},
pages = {315-326},
publisher = {Annales mathématiques Blaise Pascal},
title = {Standard Subalgebras of Semisimple Lie Algebras and Computer-Aided for Enumeration},
url = {http://eudml.org/doc/10493},
volume = {10},
year = {2003},
}

TY - JOUR
AU - Es Saadi, B.
AU - Khakimdjanov, Yu.
AU - Makhlouf, A.
TI - Standard Subalgebras of Semisimple Lie Algebras and Computer-Aided for Enumeration
JO - Annales mathématiques Blaise Pascal
DA - 2003/7//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 2
SP - 315
EP - 326
AB - The aim of this work is to enumerate the standard subalgebras of a semisimple Lie algebra. The computations are based on the approach developed by Yu. Khakimdjanov in 1974. In this paper, we give a general formula for the number of standard subalgebras not necessarly nilpotent of a semisimple Lie algebra of type A$_{p}$ and the exceptional semisimple Lie algebras. With computer aided, we enumerate this number for the other types of small rank. Therefore, We deduce the number in the nilpotent case and describe a family of complete nilpotent standard subalgebras, these algebras are the nilradical of their normalizer.
LA - eng
KW - parabolic subalgebra; conjugacy classes
UR - http://eudml.org/doc/10493
ER -

References

top
  1. P. Cellini, P. Papi, Ad-nilpotent ideals of a Borel subalgebras, Journal of algebra 225 (2000) Zbl0951.17003MR1743654
  2. G. Favre, L. Santharoubane, Nilpotent Lie algebras of classical type, Journal of algebra 202 (1998) Zbl0978.17018MR1617679
  3. G. B. Gurevich, Standard Lie algebras, Math Sbornik (1954) MR73929
  4. Y. Khakimdjanov, Standard subalgebras of reductive Lie algebras, Moscow University Mathematics Bulletin 29 (1974) Zbl0304.17001MR382373
  5. L. Orsina, P. Papi, Enumeration of ad-nilpotent ideals of a Borel subalgebras in type A by class nilpotence, C.R.Acad.Sci.Paris Seri I Math 330 (2000) Zbl0984.17003MR1763905

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.