Conditions de régularité géométrique pour les inéquations variationnelles

Jean-Pierre Dussault; Patrice Marcotte

RAIRO - Operations Research - Recherche Opérationnelle (1989)

  • Volume: 23, Issue: 1, page 1-16
  • ISSN: 0399-0559

How to cite

top

Dussault, Jean-Pierre, and Marcotte, Patrice. "Conditions de régularité géométrique pour les inéquations variationnelles." RAIRO - Operations Research - Recherche Opérationnelle 23.1 (1989): 1-16. <http://eudml.org/doc/104936>.

@article{Dussault1989,
author = {Dussault, Jean-Pierre, Marcotte, Patrice},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {geometric regularity; line arised Jacobi method; Gauss-Seidel method; variational inequalities; local convergence; iterative schemes; projection methods},
language = {fre},
number = {1},
pages = {1-16},
publisher = {EDP-Sciences},
title = {Conditions de régularité géométrique pour les inéquations variationnelles},
url = {http://eudml.org/doc/104936},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Dussault, Jean-Pierre
AU - Marcotte, Patrice
TI - Conditions de régularité géométrique pour les inéquations variationnelles
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 1
SP - 1
EP - 16
LA - fre
KW - geometric regularity; line arised Jacobi method; Gauss-Seidel method; variational inequalities; local convergence; iterative schemes; projection methods
UR - http://eudml.org/doc/104936
ER -

References

top
  1. 1. A. AUSLENDER, Optimisation. Méthodes numériques, Masson, 1976. Zbl0326.90057MR441204
  2. 2. D. P. BERTSEKAS, On the Goldstein-Levitin-Polyak Gradient Projection Method, I.E.E.E. Trans. on Automatic Control, vol. 21, n° 2, 1976. Zbl0326.49025MR416017
  3. 3. V. CHVÁTAL, Linear Programming, Freeman, 1980. Zbl0537.90067MR717219
  4. 4. S. DAFERMOS, An Iterative Scheme for Variational Inequalities, Math. Prog., 26, 1983, p. 40-47. Zbl0506.65026MR696725
  5. 5. J.-P. DUSSAULT et P. MARCOTTE, A Modified Newton Method For Solving Variational Inequalities, Proceedings of the 24th I.E.E.E. Conference on Decision and Control, Fort Lauderdale, December 85, p. 1443-1446. 
  6. 6. A. V. FIACCO et G. P. McCORMICK, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968. Zbl0563.90068MR243831
  7. 7. R. FLETCHER, Practical Methods of Optimization, vol. 2, Wiley, 1981. Zbl0474.65043MR633058
  8. 8. R. GLOWINSKI, J.-L. LIONS et R. TRÉMOLIÈRES, Analyse numérique des inéquations variationnelles, Dunod, 1979. Zbl0358.65091
  9. 9. N. H. JOSEPHY, Newton's Method For Generalized Equations, MRC Technical Report # 1965, U. of Wisconsin-Madison, 1979. 
  10. 10. N. H. JOSEPHY, Quasi-Newton Methods for Generalized Equations, MRC Technical Report # 1966, U. of Wisconsin-Madison, 1979. 
  11. 11. S. KAKUTANI, A Generalization of Brouwer's Fixed Point Theorem, Duke Math. Journal, Vol. 8, 1941, p. 457-459. Zbl67.0742.03MR4776JFM67.0742.03
  12. 12. D. KINDERLEHRER et G. STAMPACCHIA, An Introduction to Variational Inequalities and Applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
  13. 13. J. KYPARISIS, Sensitivity Analysis Framework for Variational Inequalities, Math. Prog., Vol 38, 1987, p. 203-214. MR904587
  14. 14. P. MARCOTTE, A New algorithm for Solving Variational Inequalities with Application to the Traffic Assignment Problem, Math. Prog., 33, 1984, p. 339-351. MR816109
  15. 15. P. MARCOTTE et J.-P. DUSSAULT, A Note on a Globally Convergent Newton Method for Solving Monotone Variational Inequalities, O. R. Letters, Vol. 6, 1987, p.35-42. Zbl0623.65073MR891605
  16. 16. J. S. PANG et D. CHAN, Iterative Methods for Variational and Complementarity Problem, Math. Prog., Vol. 24, 1984, p. 284-313. Zbl0499.90074MR676947
  17. 17. S. M. ROBINSON, Generalized equations in Mathematical Programming: the Sate of the Art, Bachem, Grötschel, Korte ed., Springer-Verlag, 1982, p. 346-367. Zbl0554.34007MR717407
  18. 18. R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, 1970. Zbl0932.90001MR274683
  19. 19. R. L. TOBIN, Sensitivity Analysis for Variational Inequalities, JOTA, 48, 1981, p. 191-204. Zbl0557.49004MR825392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.