Introduction de dates échues dans l'analyse PERT-coût

Fouad Badran

RAIRO - Operations Research - Recherche Opérationnelle (1990)

  • Volume: 24, Issue: 1, page 15-27
  • ISSN: 0399-0559

How to cite

top

Badran, Fouad. "Introduction de dates échues dans l'analyse PERT-coût." RAIRO - Operations Research - Recherche Opérationnelle 24.1 (1990): 15-27. <http://eudml.org/doc/104972>.

@article{Badran1990,
author = {Badran, Fouad},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {partially ordered elementary activities; deadlines; decision support system; resource allocation},
language = {fre},
number = {1},
pages = {15-27},
publisher = {EDP-Sciences},
title = {Introduction de dates échues dans l'analyse PERT-coût},
url = {http://eudml.org/doc/104972},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Badran, Fouad
TI - Introduction de dates échues dans l'analyse PERT-coût
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1990
PB - EDP-Sciences
VL - 24
IS - 1
SP - 15
EP - 27
LA - fre
KW - partially ordered elementary activities; deadlines; decision support system; resource allocation
UR - http://eudml.org/doc/104972
ER -

References

top
  1. [1] J. CARLIER et P. CHRETIENNE, Problèmes d'Ordonnancement : Modélisation/Complexité/Algorithmes, Masson Paris, 1988. 
  2. [2] E. A. DINIC, Algorithm for Solution of a Problem of Maximum flow in a Network with Power Estimation, Soviet Math. Dolk., vol. 11, 1970, p. 1277-1280. Zbl0219.90046
  3. [3] R. FAURE, C. ROUCAIROL et P. TOLLA, Chemins et Flots, Ordonnancements, Gauthier-Villars, Paris, 1976. Zbl0349.90126MR449462
  4. [4] R. FAURE, Précis de Recherche Opérationnelle, Dunod, Paris, 1978. 
  5. [5] L. R. FORD et D. R. FULKERSON, Maximal Flow Through a Network, Canad. J. Math., vol. 8, 1956, p. 399-404. Zbl0073.40203MR79251
  6. [6] L. R. FORD et D. R. FULKERSON, Flows in Networks, Princeton Univ. press., 1962. Zbl1216.05047MR159700
  7. [7] D. R. FULKERSON, A Network Flow Computation for Project Cost Curves, Management science, vol. 7, 1961, p. 167-178. Zbl0995.90519MR148474
  8. [8] A. V. KARZANOV, Determining the Maximal Flow in a Network by the Method of Preflows, Soviet Math. Dokl., vol 15, 1974, p. 434-437. Zbl0303.90014
  9. [9] ROSEAUX, Graphes : Leurs usages, leurs algorithmes, Masson, tome 1, 1986. 
  10. [10] D. D. SLEATOR et R. E. TARJAN, A Data Structure for Dynamic Tree, J. Comput.System Sri., vol. 24, 1983. Zbl0509.68058MR710253
  11. [11] D. D. SLEATOR, An O(nm log n) Algorithm for Maximum Network Flow, Tech. Rep. STANCS-80-831, Computer science Dept., Stanford Univ., 1980. 
  12. [12] R. E. TARJAN, Data Structures And Network Algorithms, Wiley, 1983. Zbl0584.68077MR826534

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.