Heuristic methods for the p -center problem

Blas Pelegrin

RAIRO - Operations Research - Recherche Opérationnelle (1991)

  • Volume: 25, Issue: 1, page 65-72
  • ISSN: 0399-0559

How to cite

top

Pelegrin, Blas. "Heuristic methods for the $p$-center problem." RAIRO - Operations Research - Recherche Opérationnelle 25.1 (1991): 65-72. <http://eudml.org/doc/105003>.

@article{Pelegrin1991,
author = {Pelegrin, Blas},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {cluster analysis; heuristic; p-center problem; 2-approximation},
language = {eng},
number = {1},
pages = {65-72},
publisher = {EDP-Sciences},
title = {Heuristic methods for the $p$-center problem},
url = {http://eudml.org/doc/105003},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Pelegrin, Blas
TI - Heuristic methods for the $p$-center problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 1
SP - 65
EP - 72
LA - eng
KW - cluster analysis; heuristic; p-center problem; 2-approximation
UR - http://eudml.org/doc/105003
ER -

References

top
  1. 1. Y. P. ANEJA, R. CHANDRASEKARAN and K. P. K. NAIR, A Note on the m-Center Problem with Rectilinear Distances, European J. Oper. Res., 1988, 35, pp. 118-123. Zbl0699.90028MR932107
  2. 2. C. CHARALAMBUOUS, Extension of the Elzinga and Hearn Algorithm to the Weighted Case , Oper. Res., 1983, 30, pp. 591-594. Zbl0484.90030
  3. 3. L. COOPER, Heuristic Methods for Location-Allocation Problems, S.I.A.M. Review, 1964, 6, pp. 37-52. Zbl0956.90014MR160664
  4. 4. L. COOPER, N-Dimensional Location Models: An Application to Cluster Analysis, J. Regional Science, 1973, 13, pp. 41-54. 
  5. 5. P. M. DEARING and R. L. FRANCIS, A Minimax Location Problem on a Network, Transportation Science, 1974, 8, pp. 333-343. MR441298
  6. 6. Z. DREZNER, The p-Center Problem, Heuristics and Optimal Algorithms, J. Oper. Res. Society, 1984, 35, pp. 741-748. Zbl0544.90024
  7. 7. Z. DREZNER, On the Rectangular p-Center Problem, Naval Research Logistics, 1987, 34, pp. 229-234. Zbl0614.90034MR880830
  8. 8. Z. DREZNER and G. O. WESOLOWSKY, Single Facility Ip-Distance Minimax Location, S.I.A.M. J. of Algebraic and Discrete Methods, 1980, 1, pp. 315-321. Zbl0501.90031MR586159
  9. 9. M. E. DYER and A. M. FRIEZE, A Simple Heuristic for the p-Center Problem, Oper. Res. Letters, 1985, 3, pp. 285-288. Zbl0556.90019MR797340
  10. 10. H. A. EISELT and G. CHARLESWORTH, A Note on p-Center Problems in the Plane, Transportation Science, 1986, 20, pp. 130-133. Zbl0629.90031MR878973
  11. 11. R. L. FRANCIS and J. A. WHITE, Facility Layout and Location: an Analytical Approach, Pretince Hall, 1974. 
  12. 12. R. S. GARFINKEL, A. W. NEEBE and M. R. RAO, The m-Center Problem: Minimax Facility Location, Management Science, 1977, 23, pp. 1133-1142. Zbl0369.90125
  13. 13. S. L. HAKIMI, E. F. SCHMEICHEL and J. G. PIERCE, On p-Centers in Network, Transportation Science, 1978, 12, pp. 1-15. MR506674
  14. 14. G. Y. HANDLER, Complexity and Efficiency in Minimax Network Location, in Combinatorial Optimization, Christofïdes and Mingozzi Ed., 1979, pp. 281-314. Zbl0427.90082
  15. 15. G. Y. HANDLER and P. B. MIRCHANDANI, Location in Networks, M.I.T. Press, Cambridge, 1979. MR525692
  16. 16. D. S. HOCHBAUM and D. B. SHMOYS, A Best Possible Heuristic for the k-Center Problem, Math. Oper. Res., 1985, 10, pp. 180-184. Zbl0565.90015MR793876
  17. 17. W. L. HSU and G. L. NEMHAUSER, Easy and Hard Bottleneck Location Problems, Discrete Appl. Math., 1979, 1, pp. 209-216. Zbl0424.90049MR549500
  18. 18. O. KARIV and S. L. HAKIMI, An Algorithmic Approach to Network Location Problems, S I.A.M. J. Applied Math., 1979, 37, pp. 513-538. Zbl0432.90074MR549138
  19. 19. S. MASUYAMA, T. IBARAKI and T. HASEGAWA, The Computational Complexity of the m-Center Problem on the Plane. Transaction of the IECE of Japan E 64/2, 1981, 2, pp.57-64. 
  20. 20. N. MEGIDDO and K. J. SUPOWIT, On the Complexity of Some Common Geometric Location Problems, S.I.A.M. J, of Cornp., 1984, 13, pp. 182-196. Zbl0534.68032MR731036
  21. 21. E. MINIEKA, A Polynomial Time Algorithm for Finding the Absolute Center of a Network, Networks, 1981, 11, pp. 351-355. Zbl0738.90045MR645111
  22. 22. B. PELEGRIN, General Approach for the 1-Center Problem, Cahiers du Centre d'Etudes de Recherche Opérationnelle, 1986, 28, pp. 293-302, Zbl0615.90034MR885769
  23. 23. B. PELEGRIN, The p-Center Problem Under Bidirectional Polyhedral Norms, in Proceedings III Meeting E.W.G. on Locational Analysis, pp. 151-169, Sevilla (Spain), 1988. 
  24. 24. B. PELEGRIN, The p-Center Problem in Rn with Weighted Tchebycheff Norms, Working paper, Dpto. Matemática Aplicada y Estadística, 1990, J, Oper. Res. Society (submitted). 
  25. 25. J. PLESNIK, A Heuristic for the p-Center Problem in Graphs, Discr. Appl. Math., 1987, 17, pp.263-268. Zbl0637.05020MR890636
  26. 26. H. SPÄTH, Computational Experience with the Exchange method, European J. Oper. Res., 1977, 1, pp. 23-31. Zbl0353.65004
  27. 27. H. SPÄTH, Cluster Disection and Analysis, Ellis Horwood Limited, 1985. Zbl0584.62094
  28. 28. H. B. TEITZ and P. BART, Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph, Operat. Res., 1968, 16, pp. 955-961. Zbl0165.22804
  29. 29. J. VIJAY, An Algorithm for the p-Center Problem in the Plane, Transportation Science, 1985, 19, pp. 235-245. Zbl0608.90020
  30. 30. C. D. T. WATSON-GANDY, The Multi-Facility Minimax Weber Problem, European J. Oper. Res., 1984, 18, pp. 44-50. Zbl0542.90033MR761947

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.