From the median to the generalized center
Pierre Hansen; Martine Labbé; Jacques-François Thisse
RAIRO - Operations Research - Recherche Opérationnelle (1991)
- Volume: 25, Issue: 1, page 73-86
- ISSN: 0399-0559
Access Full Article
topHow to cite
topReferences
top- 1. J. HALPERN, The Location of a Center-Median Convex Combination on an Undirected Tree, J. Regional Sci., 1976, 16, pp. 237-245.
- 2. J. HALPERN, Finding Minimal Center-Median Convex Combinations (Cent-Dian) of a Graph, Management Sci., 1978, 24, pp. 535-544. Zbl0371.90120MR521662
- >3. J. HALPERN, Duality in the Cent-Dian of a Graph, Oper. Res., 1980, 28, pp. 722-735. Zbl0451.90050
- 4. S.L. AKIMI, Optimal Locations of Switching Centers and the Absolute Centers and Medians of a Graph, Oper. Res., 1964, 12, pp.450-459. Zbl0123.00305
- 5. P. HANSEN, M. LABBÉ, D. PEETERS and J.-F. THISSE, Single Facility Location on Networks, Ann. Discrete Math., 1987, 31, pp. 113-146. Zbl0618.90028MR878777
- 6. P. HANSEN, J.-F. THISSE, and R. E. WENDELL, Efficient Points on a Network, Networks, 1986, 16, pp. 358-367. Zbl0644.90029MR862893
- 7. O. KARIV and S. L. HAKIMI, An Algorithmic Approach to Network Location Problems I: The p-Centers, S.I.A.M. J. Appl. Math., 1979, 37, pp. 513-538. Zbl0432.90074MR549138
- 8. M. LABBÉ, Essays in Network Location Theory, Doctoral Dissertation, Université Libre de Bruxelles, 1985. Zbl0576.90023MR797813
- 9. F. P. PREPARATA and M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985. Zbl0759.68037MR805539