A family of Hamilton type methods for congressional apportionments
RAIRO - Operations Research - Recherche Opérationnelle (1992)
- Volume: 26, Issue: 1, page 31-40
- ISSN: 0399-0559
Access Full Article
topHow to cite
topGonzalez, J., and Lacourly, N.. "A family of Hamilton type methods for congressional apportionments." RAIRO - Operations Research - Recherche Opérationnelle 26.1 (1992): 31-40. <http://eudml.org/doc/105028>.
@article{Gonzalez1992,
author = {Gonzalez, J., Lacourly, N.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {partial population monotonicity; near fair share; apportionment of seats},
language = {eng},
number = {1},
pages = {31-40},
publisher = {EDP-Sciences},
title = {A family of Hamilton type methods for congressional apportionments},
url = {http://eudml.org/doc/105028},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Gonzalez, J.
AU - Lacourly, N.
TI - A family of Hamilton type methods for congressional apportionments
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 1
SP - 31
EP - 40
LA - eng
KW - partial population monotonicity; near fair share; apportionment of seats
UR - http://eudml.org/doc/105028
ER -
References
top- 1. M. L. BALINSKI and H. P. YOUNG, The Quota Method of Apportionment, Amer. Math. Monthly, 1975, 82, pp. 701-730. Zbl0316.90021MR504067
- 2. M. L. BALINSKI and H. P. YOUNG, Fair Representation, New Haven and London, Yale University, Press, 1982. MR649246
- 3. G. BIRKHOFF, House monotone apportionment schemes, Proc. Nat. Acad. Sci. U.S.A. 1976, 73, pp. 684-686. Zbl0322.90075MR403731
- 4. P. C. FISHBURN and S. J. BRAMS, Paradoxes of Preferntial Voting, Math. Mag., 1983, 56, pp. 207-214. Zbl0521.90006MR1572476
- 5. E. V. HUNTINGTON, The Apportionment of Representatives in Congress, Trans. Am. Math. Soc. 1968, 80, pp. 85-110. Zbl54.0543.04MR1501423JFM54.0543.04
- 6. J. W. STILL, Class of New Methods for Congressional Apportionment, S.I.A.M. J. Appl. Math., 1979, 37, pp. 401-418. Zbl0416.90039MR543959
- 7. D. R. WOODALL, How Proportional is Proportional Representation, Math. Intelligencer, 1986, 8, pp. 36-46. Zbl0618.92021MR858297
- 8. H. P. YOUNG, Fair Allocation, Procceding of Symposia in Applied Mathematics, 33, AMS Providence, Rhode Island, 1985. Zbl0567.00014MR814330
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.