Symmetric quantum Weyl algebras

Rafael Díaz[1]; Eddy Pariguan[2]

  • [1] Instituto Venezolano de Inves- tigaciones Científicas Departamento de Matemáticas Altos de Pipe. Caracas 21827 Venezuela
  • [2] Universidad Central de Venezue- la Departamento de Matemáticas Los Chaguaramos Caracas 1020 Venezuela

Annales mathématiques Blaise Pascal (2004)

  • Volume: 11, Issue: 2, page 187-203
  • ISSN: 1259-1734

Abstract

top
We study the symmetric powers of four algebras: q -oscillator algebra, q -Weyl algebra, h -Weyl algebra and U ( 𝔰𝔩 2 ) . We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.

How to cite

top

Díaz, Rafael, and Pariguan, Eddy. "Symmetric quantum Weyl algebras." Annales mathématiques Blaise Pascal 11.2 (2004): 187-203. <http://eudml.org/doc/10505>.

@article{Díaz2004,
abstract = {We study the symmetric powers of four algebras: $q$-oscillator algebra, $q$-Weyl algebra, $h$-Weyl algebra and $U(\{\mathfrak\{sl\}\}_2)$. We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.},
affiliation = {Instituto Venezolano de Inves- tigaciones Científicas Departamento de Matemáticas Altos de Pipe. Caracas 21827 Venezuela; Universidad Central de Venezue- la Departamento de Matemáticas Los Chaguaramos Caracas 1020 Venezuela},
author = {Díaz, Rafael, Pariguan, Eddy},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
month = {7},
number = {2},
pages = {187-203},
publisher = {Annales mathématiques Blaise Pascal},
title = {Symmetric quantum Weyl algebras},
url = {http://eudml.org/doc/10505},
volume = {11},
year = {2004},
}

TY - JOUR
AU - Díaz, Rafael
AU - Pariguan, Eddy
TI - Symmetric quantum Weyl algebras
JO - Annales mathématiques Blaise Pascal
DA - 2004/7//
PB - Annales mathématiques Blaise Pascal
VL - 11
IS - 2
SP - 187
EP - 203
AB - We study the symmetric powers of four algebras: $q$-oscillator algebra, $q$-Weyl algebra, $h$-Weyl algebra and $U({\mathfrak{sl}}_2)$. We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.
LA - eng
UR - http://eudml.org/doc/10505
ER -

References

top
  1. J. Alev, T.J. Hodges, J.D. Velez, Fixed rings of the Weyl algebra A 1 ( ) , Journal of algebra 130 (1990), 83-96 Zbl0695.16022MR1045737
  2. Christian Kassel, Quantum groups, (1995), Springer-Velarg, New York Zbl0808.17003MR1321145
  3. Emil Martinec, Gregory Moore, Noncommutative Solitons on Orbifolds, (2001) 
  4. M. Kontsevich, Deformation Quantization of Poisson Manifolds I, (1997) Zbl1058.53065
  5. Leonid Korogodski, Yan Soibelman., Algebras of functions on Quantum groups. Part I, Mathematical surveys and monographs 56 (1996) Zbl0923.17017
  6. Pavel Etingof, Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math 147 (2002), 243-348 Zbl1061.16032MR1881922
  7. Peter Doubilet, On the foundations of combinatorial theory. VII: Symmetric functions through the theory of distribution and occupancy, Gian-Carlo Rota on Combinatorics. Introductory papers and commentaries (1995), 402-422 
  8. Rafael Díaz, Eddy Pariguan, Quantum symmetric functions, (2003) Zbl1093.53096
  9. Rafael Díaz, Eddy Pariguan, Super, quantum and non-commutative species, (2004) Zbl1239.16001
  10. Rajesh Gopakumar, Shiraz Minwalla, Andrew Strominger, Noncommutative Solitons, J. High Energy Phys. JHEP 05-020 (2000) Zbl0989.81612MR1768736
  11. A.I. Solomon, Phys.Lett. A 196 (1994) 
  12. Victor Kac, Infinite dimensional Lie algebras., (1990), Cambridge University Press, New York Zbl0716.17022MR1104219
  13. Victor Kac, Pokman Cheung, Quantum Calculus, (2002), Springer-Velarg, New York Zbl0986.05001MR1865777

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.