Symmetric quantum Weyl algebras
Rafael Díaz[1]; Eddy Pariguan[2]
- [1] Instituto Venezolano de Inves- tigaciones Científicas Departamento de Matemáticas Altos de Pipe. Caracas 21827 Venezuela
- [2] Universidad Central de Venezue- la Departamento de Matemáticas Los Chaguaramos Caracas 1020 Venezuela
Annales mathématiques Blaise Pascal (2004)
- Volume: 11, Issue: 2, page 187-203
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topDíaz, Rafael, and Pariguan, Eddy. "Symmetric quantum Weyl algebras." Annales mathématiques Blaise Pascal 11.2 (2004): 187-203. <http://eudml.org/doc/10505>.
@article{Díaz2004,
abstract = {We study the symmetric powers of four algebras: $q$-oscillator algebra, $q$-Weyl algebra, $h$-Weyl algebra and $U(\{\mathfrak\{sl\}\}_2)$. We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.},
affiliation = {Instituto Venezolano de Inves- tigaciones Científicas Departamento de Matemáticas Altos de Pipe. Caracas 21827 Venezuela; Universidad Central de Venezue- la Departamento de Matemáticas Los Chaguaramos Caracas 1020 Venezuela},
author = {Díaz, Rafael, Pariguan, Eddy},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
month = {7},
number = {2},
pages = {187-203},
publisher = {Annales mathématiques Blaise Pascal},
title = {Symmetric quantum Weyl algebras},
url = {http://eudml.org/doc/10505},
volume = {11},
year = {2004},
}
TY - JOUR
AU - Díaz, Rafael
AU - Pariguan, Eddy
TI - Symmetric quantum Weyl algebras
JO - Annales mathématiques Blaise Pascal
DA - 2004/7//
PB - Annales mathématiques Blaise Pascal
VL - 11
IS - 2
SP - 187
EP - 203
AB - We study the symmetric powers of four algebras: $q$-oscillator algebra, $q$-Weyl algebra, $h$-Weyl algebra and $U({\mathfrak{sl}}_2)$. We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.
LA - eng
UR - http://eudml.org/doc/10505
ER -
References
top- J. Alev, T.J. Hodges, J.D. Velez, Fixed rings of the Weyl algebra , Journal of algebra 130 (1990), 83-96 Zbl0695.16022MR1045737
- Christian Kassel, Quantum groups, (1995), Springer-Velarg, New York Zbl0808.17003MR1321145
- Emil Martinec, Gregory Moore, Noncommutative Solitons on Orbifolds, (2001)
- M. Kontsevich, Deformation Quantization of Poisson Manifolds I, (1997) Zbl1058.53065
- Leonid Korogodski, Yan Soibelman., Algebras of functions on Quantum groups. Part I, Mathematical surveys and monographs 56 (1996) Zbl0923.17017
- Pavel Etingof, Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math 147 (2002), 243-348 Zbl1061.16032MR1881922
- Peter Doubilet, On the foundations of combinatorial theory. VII: Symmetric functions through the theory of distribution and occupancy, Gian-Carlo Rota on Combinatorics. Introductory papers and commentaries (1995), 402-422
- Rafael Díaz, Eddy Pariguan, Quantum symmetric functions, (2003) Zbl1093.53096
- Rafael Díaz, Eddy Pariguan, Super, quantum and non-commutative species, (2004) Zbl1239.16001
- Rajesh Gopakumar, Shiraz Minwalla, Andrew Strominger, Noncommutative Solitons, J. High Energy Phys. JHEP 05-020 (2000) Zbl0989.81612MR1768736
- A.I. Solomon, Phys.Lett. A 196 (1994)
- Victor Kac, Infinite dimensional Lie algebras., (1990), Cambridge University Press, New York Zbl0716.17022MR1104219
- Victor Kac, Pokman Cheung, Quantum Calculus, (2002), Springer-Velarg, New York Zbl0986.05001MR1865777
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.