Décomposition en matrices graphiques de matrices en : application à la résolution de programmes linéaires entiers
RAIRO - Operations Research - Recherche Opérationnelle (1993)
- Volume: 27, Issue: 3, page 293-306
- ISSN: 0399-0559
Access Full Article
topHow to cite
topQuilliot, A.. "Décomposition en matrices graphiques de matrices en $\lbrace 0, 1, -1\rbrace $ : application à la résolution de programmes linéaires entiers." RAIRO - Operations Research - Recherche Opérationnelle 27.3 (1993): 293-306. <http://eudml.org/doc/105062>.
@article{Quilliot1993,
author = {Quilliot, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {total unimodularity; network matrix; decomposition; linear integer programs},
language = {fre},
number = {3},
pages = {293-306},
publisher = {EDP-Sciences},
title = {Décomposition en matrices graphiques de matrices en $\lbrace 0, 1, -1\rbrace $ : application à la résolution de programmes linéaires entiers},
url = {http://eudml.org/doc/105062},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Quilliot, A.
TI - Décomposition en matrices graphiques de matrices en $\lbrace 0, 1, -1\rbrace $ : application à la résolution de programmes linéaires entiers
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 3
SP - 293
EP - 306
LA - fre
KW - total unimodularity; network matrix; decomposition; linear integer programs
UR - http://eudml.org/doc/105062
ER -
References
top- 1. L. AUSLANDER et H. TRENT, Incidence Matrices and Linear Graphs, J. of Maths and Mecha, 1959, 8, p. 827-835. Zbl0173.26402MR105371
- 2. L. AUSLANDER et H. TRENT, On the Realization of a Linear Graph Given its Algebraic Specification, J. of Acoustical Society of America, 33, p. 1183-1192. MR143198
- 3. P. BAPTISTE et J. FAVREL, Résolution de problèmes d'ordonnancements par graphes d'intervalles et treillis de galois. RAJ.R.O., 1984, 18, 4. Zbl0549.90054MR782439
- 4. J. F. BENDERS, Partitionning Procedure for Solving Mixed Variables Programming Problems. Numerische Mathematik, 1962, 4, p. 238-252. Zbl0109.38302MR147303
- 5. C. BERGE, Graphes et hypergraphes (chap. 5, 6), Dunod, 1974. Zbl0213.25702MR357173
- 6. R. BIXBY et W. CUNINGHAM, Converting Linear Programs to Network Problems, Maths of Operat. Research, 1980, 5, p. 321-357. Zbl0442.90095MR594849
- 7. M. CHEIN et M. HABIB, The Jump Number of Dags and Posets : an Introduction, Ann. of discrete math, 1980, 9, p. 189-194. Zbl0445.05048MR597371
- 8. V. CHVATAL, Linear programming, Freeman, N.Y., 1983. Zbl0537.90067MR717219
- 9. P. DUCHET, Problèmes de représentations et noyaux, Thèse d'État, Paris-VI, 1981.
- 10. I. HELLER et A. HOFFMAN, On Unimodular Matrices, Pacific Journ. of Math., 1962, 72, p. 1321-1327. Zbl0115.01104MR150051
- 11. A. HOFFMAN et J. KRUSKAL, Integral Boundary Points of Convex Polyedra, in Linear Inequalities and Related Systems, H. KUHN and A. TUCKER éds., Princeton Univ. Press, 1956, p. 223-246. Zbl0072.37803MR85148
- 12. C. PAPADIMITRIOU et K. STEIGLITZ, Combinatorial optimization (chap. 3, 4, 5), Prentice Hall, 1982. Zbl0503.90060MR663728
- 13. A. SCHRIJVER, Theory of Linear and Integer Programming (chap. 19, 20), Wiley Interscience, 1986. Zbl0970.90052MR874114
- 14. P. SEYMOUR, Recognizing graphie matroids, Combinatorica, 1985, 1, p. 75-78. Zbl0501.05022MR602418
- 15. P. SEYMOUR, Decomposition of Regular Matroids, J.C.T. B., 1980, 28, p. 305-359. Zbl0443.05027MR579077
- 16. W. TUTTE, An Algorithm for Determining Whether a Given Binary Matroid is Graphic, Proc; of the American Math. Society, 1960, 11, p. 905-917. Zbl0097.38905MR117173
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.