Pénalités mixtes : un algorithme superlinéaire en deux étapes
A. Benchakroun; J.-P. Dussault; A. Mansouri
RAIRO - Operations Research - Recherche Opérationnelle (1993)
- Volume: 27, Issue: 4, page 353-374
- ISSN: 0399-0559
Access Full Article
topHow to cite
topBenchakroun, A., Dussault, J.-P., and Mansouri, A.. "Pénalités mixtes : un algorithme superlinéaire en deux étapes." RAIRO - Operations Research - Recherche Opérationnelle 27.4 (1993): 353-374. <http://eudml.org/doc/105066>.
@article{Benchakroun1993,
author = {Benchakroun, A., Dussault, J.-P., Mansouri, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {extrapolation; ill-conditioning; mixed penalty algorithm; constrained nonlinear programming},
language = {fre},
number = {4},
pages = {353-374},
publisher = {EDP-Sciences},
title = {Pénalités mixtes : un algorithme superlinéaire en deux étapes},
url = {http://eudml.org/doc/105066},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Benchakroun, A.
AU - Dussault, J.-P.
AU - Mansouri, A.
TI - Pénalités mixtes : un algorithme superlinéaire en deux étapes
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 4
SP - 353
EP - 374
LA - fre
KW - extrapolation; ill-conditioning; mixed penalty algorithm; constrained nonlinear programming
UR - http://eudml.org/doc/105066
ER -
References
top- 1. C. G. BROYDEN et N. F. ATTIA, Penalty Functions, Newton's Method, and Quadratic Progamming, Journal of Optimization Theory and Applications, 1988, Quadratic ,58, n°3, p. 377-381. Zbl0628.90056MR959251
- 2. R. COURANT, Variationnal Methods for the Solution of Problems of Equilibrium and Vibrations, Bull. Amer. Math, Soc. 1943, 49, p. 1-23. Zbl0063.00985MR7838
- 3. J.-P. DUSSAULT, Numerical Stability and Efficiency of Penalty Algorithms, S.I.A.M, Num. Anal. 1990, to appear. Zbl0816.65039MR1313715
- 4. A. V. FIACCO et G. P. MCCORMICK, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, NewYork, 1968. Zbl0563.90068MR243831
- 5. K. R. FRISH, The Logarithmic Potential Method of Convex Programming, Memorandum of May 13, University Institute of Economics, Oslo, 1955.
- 6. G. P. MCCORMICK, The Projective SUMT Method for Convex Programming, M.O.R. 1989, 14, p. 203-223. Zbl0675.90067MR997029
- 7. W. MURRAY, Constrained Optimization, Ph. D. thesis, University of London, 1969.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.