Pénalités mixtes : un algorithme superlinéaire en deux étapes

A. Benchakroun; J.-P. Dussault; A. Mansouri

RAIRO - Operations Research - Recherche Opérationnelle (1993)

  • Volume: 27, Issue: 4, page 353-374
  • ISSN: 0399-0559

How to cite

top

Benchakroun, A., Dussault, J.-P., and Mansouri, A.. "Pénalités mixtes : un algorithme superlinéaire en deux étapes." RAIRO - Operations Research - Recherche Opérationnelle 27.4 (1993): 353-374. <http://eudml.org/doc/105066>.

@article{Benchakroun1993,
author = {Benchakroun, A., Dussault, J.-P., Mansouri, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {extrapolation; ill-conditioning; mixed penalty algorithm; constrained nonlinear programming},
language = {fre},
number = {4},
pages = {353-374},
publisher = {EDP-Sciences},
title = {Pénalités mixtes : un algorithme superlinéaire en deux étapes},
url = {http://eudml.org/doc/105066},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Benchakroun, A.
AU - Dussault, J.-P.
AU - Mansouri, A.
TI - Pénalités mixtes : un algorithme superlinéaire en deux étapes
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 4
SP - 353
EP - 374
LA - fre
KW - extrapolation; ill-conditioning; mixed penalty algorithm; constrained nonlinear programming
UR - http://eudml.org/doc/105066
ER -

References

top
  1. 1. C. G. BROYDEN et N. F. ATTIA, Penalty Functions, Newton's Method, and Quadratic Progamming, Journal of Optimization Theory and Applications, 1988, Quadratic ,58, n°3, p. 377-381. Zbl0628.90056MR959251
  2. 2. R. COURANT, Variationnal Methods for the Solution of Problems of Equilibrium and Vibrations, Bull. Amer. Math, Soc. 1943, 49, p. 1-23. Zbl0063.00985MR7838
  3. 3. J.-P. DUSSAULT, Numerical Stability and Efficiency of Penalty Algorithms, S.I.A.M, Num. Anal. 1990, to appear. Zbl0816.65039MR1313715
  4. 4. A. V. FIACCO et G. P. MCCORMICK, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, NewYork, 1968. Zbl0563.90068MR243831
  5. 5. K. R. FRISH, The Logarithmic Potential Method of Convex Programming, Memorandum of May 13, University Institute of Economics, Oslo, 1955. 
  6. 6. G. P. MCCORMICK, The Projective SUMT Method for Convex Programming, M.O.R. 1989, 14, p. 203-223. Zbl0675.90067MR997029
  7. 7. W. MURRAY, Constrained Optimization, Ph. D. thesis, University of London, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.