Generalized Besov type spaces on the Laguerre hypergroup
Miloud Assal[1]; Hacen Ben Abdallah[2]
- [1] IPEIN. Campus Universitaire Département de Mathématiques Mrezka 8000 Nabeul Tunisia
- [2] Faculté des Sciences de Bizerte Département de Mathématiques Zarzouna 7021 Bizerte Tunisia
Annales mathématiques Blaise Pascal (2005)
- Volume: 12, Issue: 1, page 117-145
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAssal, Miloud, and Ben Abdallah, Hacen. "Generalized Besov type spaces on the Laguerre hypergroup." Annales mathématiques Blaise Pascal 12.1 (2005): 117-145. <http://eudml.org/doc/10507>.
@article{Assal2005,
abstract = {In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.},
affiliation = {IPEIN. Campus Universitaire Département de Mathématiques Mrezka 8000 Nabeul Tunisia; Faculté des Sciences de Bizerte Département de Mathématiques Zarzouna 7021 Bizerte Tunisia},
author = {Assal, Miloud, Ben Abdallah, Hacen},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Besov type spaces; Laguerre hypergroup; radial functions; Heisenberg group},
language = {eng},
month = {1},
number = {1},
pages = {117-145},
publisher = {Annales mathématiques Blaise Pascal},
title = {Generalized Besov type spaces on the Laguerre hypergroup},
url = {http://eudml.org/doc/10507},
volume = {12},
year = {2005},
}
TY - JOUR
AU - Assal, Miloud
AU - Ben Abdallah, Hacen
TI - Generalized Besov type spaces on the Laguerre hypergroup
JO - Annales mathématiques Blaise Pascal
DA - 2005/1//
PB - Annales mathématiques Blaise Pascal
VL - 12
IS - 1
SP - 117
EP - 145
AB - In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.
LA - eng
KW - Besov type spaces; Laguerre hypergroup; radial functions; Heisenberg group
UR - http://eudml.org/doc/10507
ER -
References
top- M. Assal, M. M. Nessibi, Sobolev Type Spaces on the Dual of the Laguerre Hypergroup, Potential Analysis 20 (2004), 85-103 Zbl1060.42010MR2032613
- H. Bahouri, P. Gérard, C. J. Xu, Espaces de Besov et Estimations de Strichartz Généralisées sur le Groupe de Heisenberg, Journal d’Analyse Mathématique 82 (2000) Zbl0965.22010
- O. V. Besov, On a Family of Function Spaces in Connection with Embeddings and Extensions, Trudy Mat. Inst. Steklov 60 (1961), 42-81 Zbl0158.13901MR133675
- J. J. Betancor, L. Rodríguez-Mesa, On the Besov-Hankel Spaces, Math. Soc. Japan 50 n ∘ 3 (1998), 781-788 Zbl0904.46022MR1626374
- W. R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, (1994), de Gruyter studies in Mathematics 20, de Gruyter, Berlin / New York Zbl0828.43005MR1312826
- G. Bourdaud, Réalisation des Espaces de Besov Homogènes, Arkiv for Mat. 26 (1988), 41-54 Zbl0661.46026MR948279
- G. Bourdaud, Analyse Fonctionnelle dans l’Espace Euclidien, (1995), Publications Mathématiques de Paris 7 Zbl0627.46048
- J.-Y Chemin, About Navier-Stokes System, (1996), Publication du Laboratoire d’Analyse Numerique, Université Pierre et Marie Curie
- T. Coulhon, E. Russ, V. Tardivel-Nachef, Sobolev Algebras on Lie Groups and Riemannian Manifolds, Amer. J. of Math. 123 (2001), 283-342 Zbl0990.43003MR1828225
- J. Delsarte, Sur une Extension de la Formule de Taylor, J. Math. et Appl. 17, Fasc. III (1938), 213-231
- A. Erdélyi, W. Magnus, F. Aberthettinger, G. Tricomi, Higher Transcendental Functions. Vol II, (1993), M.G Graw-Hill, New York Zbl0052.29502
- J. Faraut, K. Harzallah, Deux cours d’Analyse Harmonique, Ecole d’été d’Analyse Harmonique de Tunis, (1984), Birkhäuser Zbl0622.43001
- A. Fitouhi, M. M. Hamza, Expansion In Series of Laguerre Functions for Solution of Perturbed Laguerre Equations Zbl0919.33004
- M. Frazier, B. Jawerth, G. Weiss, Sur une Extension de la Formule de Taylor, C.B.M.S, Amer. Math. Soc., Providence, Rhod Island 79 (1991) MR1107300
- R. I. Jewett, Spaces with an Abstract Convolution of Measures, Adv. in Math. 18 (1975), 1-101 Zbl0325.42017MR394034
- T. H. Koornwinder, Positivity Proofs for Linearisation and Connection Coefficients of Orthogonal Polynomials Satisfying an Addition Formula, J. London. Math. Soc. 18 (1978), 101-1114 Zbl0386.33009MR493144
- N. M. Lebedev, Special Function and Their Applications, (1972), Dover, New York Zbl0271.33001MR350075
- M. M. Nessibi, M. Sifi, Laguerre Hypergroup and Limit Theorem, B.P. Komrakov, I.S. Krasil’shchik, G.L. Litvinov and A.B. Sossinsky (eds.), Lie Groups and Lie Algebra-Their Representations, Generalizations and Applications, Kluwer Acad. Publ. Dordrecht (1998), 133-145 Zbl0905.60016
- M. M. Nessibi, K. Trimèche, Inversion of the Radon Transform on the Laguerre Hypergroup by Using Generalized Wavelets, Journal of mathematical analysis and application 208 (1997), 337-363 Zbl0870.43004MR1441440
- J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Serie Durham, Univ. (1976) Zbl0356.46038MR461123
- E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Ossillatory Integrals, (1993), Princeton University Press Zbl0821.42001MR1232192
- K. Stempak, An Algebra Associated With the Generalized Sublaplacian, Studia Math. 88 (1988), 245-256 Zbl0672.46025MR932012
- K. Stempak, Mean of Summability Methods for Laguerre Series, Transactions of the American mathematical society 322, Number 2 (December 1990) Zbl0713.42024MR974528
- H. Triebel, Theory of Function Spaces, (1983), Birkhäuser Zbl0546.46028MR781540
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.