Generalized Besov type spaces on the Laguerre hypergroup

Miloud Assal[1]; Hacen Ben Abdallah[2]

  • [1] IPEIN. Campus Universitaire Département de Mathématiques Mrezka 8000 Nabeul Tunisia
  • [2] Faculté des Sciences de Bizerte Département de Mathématiques Zarzouna 7021 Bizerte Tunisia

Annales mathématiques Blaise Pascal (2005)

  • Volume: 12, Issue: 1, page 117-145
  • ISSN: 1259-1734

Abstract

top
In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.

How to cite

top

Assal, Miloud, and Ben Abdallah, Hacen. "Generalized Besov type spaces on the Laguerre hypergroup." Annales mathématiques Blaise Pascal 12.1 (2005): 117-145. <http://eudml.org/doc/10507>.

@article{Assal2005,
abstract = {In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.},
affiliation = {IPEIN. Campus Universitaire Département de Mathématiques Mrezka 8000 Nabeul Tunisia; Faculté des Sciences de Bizerte Département de Mathématiques Zarzouna 7021 Bizerte Tunisia},
author = {Assal, Miloud, Ben Abdallah, Hacen},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Besov type spaces; Laguerre hypergroup; radial functions; Heisenberg group},
language = {eng},
month = {1},
number = {1},
pages = {117-145},
publisher = {Annales mathématiques Blaise Pascal},
title = {Generalized Besov type spaces on the Laguerre hypergroup},
url = {http://eudml.org/doc/10507},
volume = {12},
year = {2005},
}

TY - JOUR
AU - Assal, Miloud
AU - Ben Abdallah, Hacen
TI - Generalized Besov type spaces on the Laguerre hypergroup
JO - Annales mathématiques Blaise Pascal
DA - 2005/1//
PB - Annales mathématiques Blaise Pascal
VL - 12
IS - 1
SP - 117
EP - 145
AB - In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.
LA - eng
KW - Besov type spaces; Laguerre hypergroup; radial functions; Heisenberg group
UR - http://eudml.org/doc/10507
ER -

References

top
  1. M. Assal, M. M. Nessibi, Sobolev Type Spaces on the Dual of the Laguerre Hypergroup, Potential Analysis 20 (2004), 85-103 Zbl1060.42010MR2032613
  2. H. Bahouri, P. Gérard, C. J. Xu, Espaces de Besov et Estimations de Strichartz Généralisées sur le Groupe de Heisenberg, Journal d’Analyse Mathématique 82 (2000) Zbl0965.22010
  3. O. V. Besov, On a Family of Function Spaces in Connection with Embeddings and Extensions, Trudy Mat. Inst. Steklov 60 (1961), 42-81 Zbl0158.13901MR133675
  4. J. J. Betancor, L. Rodríguez-Mesa, On the Besov-Hankel Spaces, Math. Soc. Japan 50 n ∘ 3 (1998), 781-788 Zbl0904.46022MR1626374
  5. W. R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, (1994), de Gruyter studies in Mathematics 20, de Gruyter, Berlin / New York Zbl0828.43005MR1312826
  6. G. Bourdaud, Réalisation des Espaces de Besov Homogènes, Arkiv for Mat. 26 (1988), 41-54 Zbl0661.46026MR948279
  7. G. Bourdaud, Analyse Fonctionnelle dans l’Espace Euclidien, (1995), Publications Mathématiques de Paris 7 Zbl0627.46048
  8. J.-Y Chemin, About Navier-Stokes System, (1996), Publication du Laboratoire d’Analyse Numerique, Université Pierre et Marie Curie 
  9. T. Coulhon, E. Russ, V. Tardivel-Nachef, Sobolev Algebras on Lie Groups and Riemannian Manifolds, Amer. J. of Math. 123 (2001), 283-342 Zbl0990.43003MR1828225
  10. J. Delsarte, Sur une Extension de la Formule de Taylor, J. Math. et Appl. 17, Fasc. III (1938), 213-231 
  11. A. Erdélyi, W. Magnus, F. Aberthettinger, G. Tricomi, Higher Transcendental Functions. Vol II, (1993), M.G Graw-Hill, New York Zbl0052.29502
  12. J. Faraut, K. Harzallah, Deux cours d’Analyse Harmonique, Ecole d’été d’Analyse Harmonique de Tunis, (1984), Birkhäuser Zbl0622.43001
  13. A. Fitouhi, M. M. Hamza, Expansion In Series of Laguerre Functions for Solution of Perturbed Laguerre Equations Zbl0919.33004
  14. M. Frazier, B. Jawerth, G. Weiss, Sur une Extension de la Formule de Taylor, C.B.M.S, Amer. Math. Soc., Providence, Rhod Island 79 (1991) MR1107300
  15. R. I. Jewett, Spaces with an Abstract Convolution of Measures, Adv. in Math. 18 (1975), 1-101 Zbl0325.42017MR394034
  16. T. H. Koornwinder, Positivity Proofs for Linearisation and Connection Coefficients of Orthogonal Polynomials Satisfying an Addition Formula, J. London. Math. Soc. 18 (1978), 101-1114 Zbl0386.33009MR493144
  17. N. M. Lebedev, Special Function and Their Applications, (1972), Dover, New York Zbl0271.33001MR350075
  18. M. M. Nessibi, M. Sifi, Laguerre Hypergroup and Limit Theorem, B.P. Komrakov, I.S. Krasil’shchik, G.L. Litvinov and A.B. Sossinsky (eds.), Lie Groups and Lie Algebra-Their Representations, Generalizations and Applications, Kluwer Acad. Publ. Dordrecht (1998), 133-145 Zbl0905.60016
  19. M. M. Nessibi, K. Trimèche, Inversion of the Radon Transform on the Laguerre Hypergroup by Using Generalized Wavelets, Journal of mathematical analysis and application 208 (1997), 337-363 Zbl0870.43004MR1441440
  20. J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Serie Durham, Univ. (1976) Zbl0356.46038MR461123
  21. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Ossillatory Integrals, (1993), Princeton University Press Zbl0821.42001MR1232192
  22. K. Stempak, An Algebra Associated With the Generalized Sublaplacian, Studia Math. 88 (1988), 245-256 Zbl0672.46025MR932012
  23. K. Stempak, Mean of Summability Methods for Laguerre Series, Transactions of the American mathematical society 322, Number 2 (December 1990) Zbl0713.42024MR974528
  24. H. Triebel, Theory of Function Spaces, (1983), Birkhäuser Zbl0546.46028MR781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.