Genetic algorithm based approach to bi-level linear programming

R. Mathieu; L. Pittard; G. Anandalingam

RAIRO - Operations Research - Recherche Opérationnelle (1994)

  • Volume: 28, Issue: 1, page 1-21
  • ISSN: 0399-0559

How to cite

top

Mathieu, R., Pittard, L., and Anandalingam, G.. "Genetic algorithm based approach to bi-level linear programming." RAIRO - Operations Research - Recherche Opérationnelle 28.1 (1994): 1-21. <http://eudml.org/doc/105071>.

@article{Mathieu1994,
author = {Mathieu, R., Pittard, L., Anandalingam, G.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {bi-level linear programming; hierarchical optimization; genetic algorithm},
language = {eng},
number = {1},
pages = {1-21},
publisher = {EDP-Sciences},
title = {Genetic algorithm based approach to bi-level linear programming},
url = {http://eudml.org/doc/105071},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Mathieu, R.
AU - Pittard, L.
AU - Anandalingam, G.
TI - Genetic algorithm based approach to bi-level linear programming
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1994
PB - EDP-Sciences
VL - 28
IS - 1
SP - 1
EP - 21
LA - eng
KW - bi-level linear programming; hierarchical optimization; genetic algorithm
UR - http://eudml.org/doc/105071
ER -

References

top
  1. A. R. ABDULLAH, A Robust Method for Linear and Nonlinear Optimization Based on Genetic Algorithm Cybernetica, 1991, 34, No. 4, pp. 279-287. Zbl0741.90062
  2. F. A. Al KHAYYAL, Minimizing A Quasiconcave Function Over a Convex Set: A Case Solvable by Lagrangian Duality, Proceedings, I.E.E.E. International Conference on Systems, Man, and Cybernetics, Tucson, 1985, AZ, pp. 661-663. 
  3. G. ANANDALINGAM, A Mathematical Programming Model of Decentralized Multi-Level Systems, J. of the Operational Research Society, 1988, 39, No. 11 Zbl0657.90061
  4. G. ANANDALINGAM and D. J. WHITE, A Penalty Function Approach to Bi-Level Linear Programming, working paper, Department of Systems, University of Pennsylvania, August, 1988. 
  5. G. ANANDALINGAM and T. L. FRIESZ, Hierarchical Optimization: An Introduction, Annals of Operations Research, 1992, 34, pp. 1-11. Zbl0751.90067MR1150995
  6. J. F. BARD, An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem, Operations Research, 1983, July-August, pp. 670-684. Zbl0525.90086MR720514
  7. J. F. BARD and J. E. FALK, An Explicit Solution to the Multi-Level Programming Problem, Computers and Operations Research, 1982, 9, No. 1, pp. 77-100. MR768598
  8. H. P. BENSON, On the Convergence of Two Branch and Bound Algorithms for Nonconvex Programming, J. of Optimization Theory and Application, 1982, 36, pp. 129-134. Zbl0453.65046MR663339
  9. A. D. BETHKE, Genetic Algorithms as Function Optimizers, Ph. D. dissertation, unpublished, University of Michigan, Ann Arbor, 1981. 
  10. W. F. BIALAS and M. H. HARWAN, On Two-Level Optimization, I.E.E.E. Transactions on Automatic Control, 1982, AC-27, pp. 211-214. Zbl0487.90005
  11. W. F. BIALAS and M. H. KARWAN, Two-Level Linear Programming, Management Science, 1984, 30, No. 8, August, pp. 1004-1020. Zbl0559.90053MR763843
  12. W. CANDLER and R. TOWNSLEY, A Linear Two-Level Programming Problem, Computers and Operations Research, 1982, 9, No. 1, pp. 59-76. MR768597
  13. L. DAVIS (Ed.), Genetic Algorithms and Simulated Annealing, Morgan Kaufman Publishers, Los Altos, CA, 1987 a. Zbl0684.68013
  14. L. DAVIS, Performance of a Genetic Algorithm on the Network Link Size Problem, paper presented at the O.R.S.A./T.I.M.S. meeting, St. Louis, October, 1987 b. 
  15. K. De JONG, Adaptive System Design: A Genetic Approach, I.E.E.E., Transactions on Systems, Man, and Cybernetics, 1986, 16, Jan.-Feb. 
  16. J. E. FALK, A Linear Mini-Max Problem, Mathematical Programming, 1973, pp. 169-188. Zbl0276.90053MR332174
  17. C. S. FISK, A Conceptual Framework for Optimal Transportation Systems Planning with Integrated Supply and Demand Models, Transportation Science, 1986, 20, No. 1, pp. 37-47. 
  18. J. FORTUNY-AMAT and B. MCCARL, A Representative and Economic Interpretation of a Two Level Programming Problem, J. of the Operational Research Society, 1981, 32, pp. 783-792. Zbl0459.90067MR626944
  19. T. L. FRIESZ and P. T. HARKER, Multicriteria Spatial Price Equilibrium Network Design: Theory and Computational Results, Transportation Research, 1983, 17b, pp. 203-217. Zbl0568.90002
  20. G. GALLO and A. ULKUCU, Bi-Linear Programming: An Exact Algorithm, Mathematical Programming, 1977, 12, pp. 173-194. Zbl0363.90086MR449682
  21. F. GLOVER, Convexity Cuts and Cut Search, Operations Research 1973, 21, pp. 123-134 Zbl0263.90020MR354004
  22. F. GLOVER, Future Paths for Integer Programming and Links to Artificial Intelligence, Computers & Operations Research, 1986, 13, (5). pp.533-549. Zbl0615.90083MR868908
  23. F. GLOVER, Tabu Search, mimeo, Center for Applied Artificial Intelligence, Graduate School of Business, Universiry of Colarado, October, 1987. 
  24. D. E. GOLDBERG and J. RICHARSDON, Genetic Algorithms with Sharing Multi-Modal Function Optimization, in Genetic Algorithms and Their Application: Proceedings of the Second International Conference on Genetic Algorithms, M.I.T., Cambridge, MA, 1987. 
  25. J. GREFENSTETTE, Optimization of Control Parameters for Genetic Algorithms, I.E.E.E. Transactions on Systems, Man, and Cybernetics, 1986, 16, (1), January-February, pp. 122-128. Zbl1020.65032
  26. M. GROTSCHEL and M. W. PADBERG, On the Symmetric Travelling Salesman Problem I: Inequalities, II: Lifting Theorems and Facets, Mathematical Programming, 1979. 16, pp. 265-302. Zbl0413.90049MR533907
  27. Y. C. HO, P. B. LUTH and R. MURALIDHARAN, Information Structures, Stackelberg Games, and Incentive Controllability, I.E.E.E. Transactions on Automatic Control, 1981, AC-31, No. 4, pp. 670-684. Zbl0476.90089
  28. J. H. HOLLAND, Adaption in Natural and Artificial Systems, The University of Michigan, 1975, Ann Arbor, MI, 1975. Zbl0317.68006MR441393
  29. S. KIRKPATRICK, Combinatorial Search Using Simulated Annealing, paper presented at the O.R.S.A./T.I.M.S. meeting, St. Louis, October, 1987. 
  30. H. KONNO, A Cutting Plane Algorithm for Solving Bilinear Programs, Mathematical Programming, 1976, 11, pp. 14-27. Zbl0353.90069MR441328
  31. V. KUMAR and L. N. KANAL, Some New Insights into the Relationships Among Dynamic Programming, Branch and Bound, and Heuristic Search Procedures, Proceedings, I.E.E.E. International Conference on Systems, Man, and Cybernetics, 1983, pp. 19-23. 
  32. J.-J. LAFFONT and E. MASKIN, The Theory of Incentives: An Overview, in W. HILDENBRAND Ed., Advances in Economic Theory, Cambridge University Press, Cambride, U.K., 1982, pp. 31-94. Zbl0556.90004
  33. L. J. LEBLANC and D. E. BOYCE, A Bi-Level Programming Algorithm for Exact Solution of the Network Design Problem with User-Optimal Flows, Transportation Research B, 1986, 28, pp. 259-265. MR846185
  34. T. H. MATHEISS and D. S. RUBIN, A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets, Mathematics of Operations Research, 1980, 5, pp. 167-185. Zbl0442.90050MR571811
  35. P. M. PARDALOS and J. B. ROSEN, Methods for Global Concave Minimization: A Bibliographic Survey, S.I.A.M. Review, 1986, 28, (3), pp. 367-379. Zbl0602.90105MR856222
  36. A. H. G. RINNOOY and G. T. TIMMER, Stochastic Global Optimization Methods, part I: Clustering Methods and part II: Multi-level, Methods Mathematical Programming, 1987, 39, No. 1, pp. 27-78. Zbl0634.90066MR909007
  37. J. D. SCHAFFER, Learning Multiclass Pattern Determination, in Proceedings of the International Conference on Genetic Algorithms and Their Applications, Robotics Institute of Carnegie-Mellon University, Pittsburg, PA, 1985. Zbl0678.68090
  38. H. von STACKELBERG, The Theory of the Market Economy, Oxford Univesity Press, Oxford, 1952. 
  39. U. P. WEN and S. T. HSU, Linear Bi-level Programming: A Review, J. of the Operational Research Society, 1991, 42, No. 2, pp. 125-133. Zbl0722.90046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.