Inverse barrier methods for linear programming

D. Den Hertog; C. Roos; T. Terlaky

RAIRO - Operations Research - Recherche Opérationnelle (1994)

  • Volume: 28, Issue: 2, page 135-163
  • ISSN: 0399-0559

How to cite

top

Hertog, D. Den, Roos, C., and Terlaky, T.. "Inverse barrier methods for linear programming." RAIRO - Operations Research - Recherche Opérationnelle 28.2 (1994): 135-163. <http://eudml.org/doc/105079>.

@article{Hertog1994,
author = {Hertog, D. Den, Roos, C., Terlaky, T.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {interior point methods; logarithmic barrier method; inverse barrier methods},
language = {eng},
number = {2},
pages = {135-163},
publisher = {EDP-Sciences},
title = {Inverse barrier methods for linear programming},
url = {http://eudml.org/doc/105079},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Hertog, D. Den
AU - Roos, C.
AU - Terlaky, T.
TI - Inverse barrier methods for linear programming
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1994
PB - EDP-Sciences
VL - 28
IS - 2
SP - 135
EP - 163
LA - eng
KW - interior point methods; logarithmic barrier method; inverse barrier methods
UR - http://eudml.org/doc/105079
ER -

References

top
  1. 1. C. W. CARROLL, The Created Response Surface Technique for Optimizing Nonlinear Restrainecl Systems, Operations Research, 1961, 9, pp. 169-184. Zbl0111.17004
  2. 2. D. DEN HERTOG, C. ROOS and T. TERLAKY, A potential Reduction Variant of Renegar's Short-Step Path-Following Method for Linear Programming, Linear Algebra and Its Applications, 1991, 68, pp. 43-68. Zbl0734.65050
  3. 3. D. DEN HERTOG, C. ROOS and J.-Ph. VIAL, A √n Complexity Reduction for Long Step Path-following Methods, SIAM Journal on Optimization, 1992, 2, pp. 71-87. Zbl0763.90064
  4. 4. J. R. ERIKSSON, An Iterative Primal-Dual Algorithm for Linear Programming, Report LiTH-MAT-R-1985-10, 1985, Department of Mathematics, Linköping University, Linköping, Sweden. 
  5. 5. A. V. FIACCO and G. P. MCCORMICK, Nonlinear Programming, Sequential Unconstrained Minimization Techniques, Wiley and Sons, New York, 1968. Zbl0563.90068
  6. 6. R. FLETCHER and A. P. MCCANN, Acceleration Techniques for Nonlinear Programming, In Optimization, R. Fletcher ed., Academie Press, London, 1969, pp. 203-214. Zbl0194.47704
  7. 7. R. FRISCH, The Logarithmic Potential Method for Solving Linear Programming Problems, Memorandum, University Institute of Economies, Oslo, 1955. 
  8. 8. C. C. GONZAGA, An Algorithm for Solving Linear Programming Problems in O(n3 L) Operations, In Progress in Mathematical Programming, Interior Point and Related Methods, pp. 1-28, N. Megiddo ed., Springer Verlag, New York, 1989. Zbl0691.90053MR982713
  9. 9. C. C. GONZAGA, Large-Steps Path-Following Methods for Linear Programming: Barrier Function Method, SIAM Journal on Optimization, 1991, 1, pp. 268-279. Zbl0754.90035MR1098430
  10. 10. P. HUARD, Resolution of Mathematical Programming with Nonlinear Constraints by the Methods of Centres, In Nonlinear Programming, J. Abadie éd., North-Holland Publishing Company, Amsterdam, Holland, 1989, pp. 207-219. Zbl0157.49701MR216865
  11. 11. N. KARMARKAR, A New Polynomial-Time Algorithm for Linear Programming, Comhinatorica, 4, 1984, pp. 373-395. Zbl0557.90065MR779900
  12. 12. J. KOWALK, Nonlinear Programming Procedures and Design Optimization, Acta Polyntech. Scand., 1966, 13, Trondheim. MR207398
  13. 13. G. P. MCCORMICK, W. C. MYLANDER and A. V. FIACCO, Computer Program Implementing the Sequential Unconstrained Minimization Technique for Nonlinear Programming, Technical Paper RAC-TP-151, Research Analysis Corporation, McLean, 1965. 
  14. 14. N. MEGIDDO, Pathways to the Optimal Set in Linear Programming, In Progress in Mathematical Programming, Interior Point and Related Methods, pp. 131-158, N. Megiddo ed., Springer Verlag, New York, 1989. Zbl0687.90056MR982720
  15. 15. R. D. C. MONTEIRO and I. ADLER, Interior Path Following Prima-Dual Algorithms, Part I: Linear Programming, Mathematical Programming, 1989, 44, pp. 27-41. Zbl0676.90038MR999721
  16. 16. R. A. POLYAK, Modified Banier Functions (theory and methods), Mathematical Programming, 1992, 54, pp. 174-222. Zbl0756.90085
  17. 17. J. RENEGAR, A Polynomial-Time Algorithm, Based on Newton's Method, for Linear Programming, Mathematical Programming, 1988, 40, pp.59-93. Zbl0654.90050MR923697
  18. 18. C. Roos and J.-Ph. VIAL, A Polynomial Method of Approximate Centers for Linear Programming, Mathematical Programming, 1992, 54, pp.295-305. Zbl0771.90067MR1159483
  19. 19. C. Roos and J.-Ph. VIAL, Long Steps with the Logarithmic Penalty Banier Function in Linear Programming, In Economic Decision-Making: Games, Economics and Optimization, dedicated to Jacques H. Drèze, edited by J. Gabszevwicz, J.-F. Richard and L. Wolsey, Elsevier Sciences Publisher B. V., 1989, pp. 433-441. Zbl0709.90076
  20. 20. A. TAMURA, H. TAKEHARA, K. FUKUDA, S. FUJISHIGE and S. KOJIMA, A Dual Primal Simplex Methods for Linear Programming, Journal of the Operations Research Society of Japan, 1988, 31, pp.413-429. Zbl0658.90062
  21. 21. D. J. WHITE, Linear Programming and Huard's Method of Centres, Working, Paper, Universities of Manchester and Virginia, United Kingdom, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.