# The generalized Weber problem with expected distances

E. Carrizosa; E. Conde; M. Muñoz-Marquez; J. Puerto

RAIRO - Operations Research - Recherche Opérationnelle (1995)

- Volume: 29, Issue: 1, page 35-57
- ISSN: 0399-0559

## Access Full Article

top## How to cite

topCarrizosa, E., et al. "The generalized Weber problem with expected distances." RAIRO - Operations Research - Recherche Opérationnelle 29.1 (1995): 35-57. <http://eudml.org/doc/105096>.

@article{Carrizosa1995,

author = {Carrizosa, E., Conde, E., Muñoz-Marquez, M., Puerto, J.},

journal = {RAIRO - Operations Research - Recherche Opérationnelle},

keywords = {average distances; regional facilities; generalized Weber problem},

language = {eng},

number = {1},

pages = {35-57},

publisher = {EDP-Sciences},

title = {The generalized Weber problem with expected distances},

url = {http://eudml.org/doc/105096},

volume = {29},

year = {1995},

}

TY - JOUR

AU - Carrizosa, E.

AU - Conde, E.

AU - Muñoz-Marquez, M.

AU - Puerto, J.

TI - The generalized Weber problem with expected distances

JO - RAIRO - Operations Research - Recherche Opérationnelle

PY - 1995

PB - EDP-Sciences

VL - 29

IS - 1

SP - 35

EP - 57

LA - eng

KW - average distances; regional facilities; generalized Weber problem

UR - http://eudml.org/doc/105096

ER -

## References

top- 1. A. A. ALY and A. S. MARUCHECK, Generalized Weber Problem with Rectangular Regions, Journal of Operational Research Society, 1982, 33, pp. 983-989. Zbl0492.90026
- 2. M. BAZARAA and C. M. SHETTY, Nonlinear Programming: Theory and Algorithms, Wiley, 1979. Zbl1140.90040MR533477
- 3. R. G. BLAND, D. GOLDFARB and M. J. TODD, The ellipsoid method: A survey. Operations Research, 1981, 29, pp. 1039-1091. Zbl0474.90056MR641676
- 4. C. D. BENNETT and A. MIRAKHOR, Optimal Facility Location with respect to several Regions, Journal of Regional Science, 1974, 14, pp. 131-136.
- 5. Z. DREZNER, Bounds on the optimal Location to the Weber Problem Under Conditions of Uncertainty, Journal of Operational Research Society, 1979, 30, pp. 923-931. Zbl0417.90093MR549701
- 6. Z. DREZNER, Sensitivity Analysis of the Optimal Location of A Facility, Naval Research Logistic Quaterly, 1985, 32, pp. 209-224. Zbl0578.90022MR785092
- 7. Z. DREZNER, Location of Regional Facilities, Naval Research Logistic Quaterly, 1986, 33, pp. 523-529. Zbl0593.90029
- 8. Z. DREZNER and G. O. WESOLOSWKY, Optimal Location of a Demand Facility Relative to Area Demand, Naval Research Logistic Quaterly, 1980, 27, pp. 199-206. Zbl0443.90028MR574047
- 9. Z. DREZNER and G. O. WESOLOSWKY, Optimum Location Probabilities in the lp distance Weber Problem. Transportation Science, 1981, 75, pp. 85-97.
- 10. R. DURIER and C. MICHELOT, Geometrical Properties of the Fermat-Weber Problem, European Journal of Operational Research, 1985, 20, pp. 332-343. Zbl0564.90013MR800909
- 11. R. L. FRANCIS and J. WHITE, Facility Layout and Location, Prentice Hall, Englewood Cliffs, 1974.
- 12. M. GROTSCHEL, L. LOVASZ and A. SCHRIJVER, The Ellipsoid Method and Combinatorial Optimization, Springer-Verlag, 1986. Zbl0492.90056
- 13. A. D. IOFFE and V. L. LEVIN, Subdifferentials of Convex Functions, Trans. Moscow Math. Soc., 1972, 26, pp. 1-72. Zbl0281.46039MR372610
- 14. H. JUEL, Bounds in the Generalized Weber Problem Under Conditions of Uncertainty, Operational Research 1981, 29, pp. 1219-1227. Zbl0474.90035MR641683
- 15. D. KENDALL, Some Problems in the Theory of Queues, Journal of the Royal Statistical Society Series B, 1951, 13, pp. 151-153. Zbl0045.07801MR47944
- 16. T. KOSHIZUKA and O. KURITA, Approximate formulas of average distances associated with regions and their applications to Location Problems, Mathematical Programming, 1991, 52, pp. 99-123. Zbl0733.90042MR1111082
- 17. R. F. LOVE, A Computational Procedure for Optimally Locating a Facility respect to Several Rectangular Regions, Journal of Regional Science, 1972, 12, pp. 233-242.
- 18. A. S. MARUCHECK and A. A. ALY, An Efficient Algorithm for the Location-Allocation Problem with Rectangular Regions, Naval Research Logistic Quaterly, 1981, 28, pp. 309-323. Zbl0462.90029
- 19. C. MICHELOT, The Mathematics of Continuous Location, in Special holde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), University of the Aegean/University of Liverpool, 1993, pp. 59-83.
- 20. F. PLASTRIA, Continuous Location Anno, 1992, a Progress Report, in Special Isolde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), 1993, pp. 85-127.
- 21. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970. Zbl0932.90001MR274683
- 22. J. E. WARD and R. E. WENDELL, A new Norm for Measuring Distance which yields linear Location Problems, Operations Research, 1980, 28, pp. 836-844. Zbl0443.90029
- 23. J. E. WARD and R. E. WENDELL, Using block norms for location modelling, Operations Research, 1985, 33, pp. 1074-1090. Zbl0582.90026MR806920
- 24. R. E. WENDELL and A. P. HURTER, Location Theory, Dominance and Convexity, Operations Research, 1973, 21, pp. 314-320. Zbl0265.90040MR351409

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.