The generalized Weber problem with expected distances

E. Carrizosa; E. Conde; M. Muñoz-Marquez; J. Puerto

RAIRO - Operations Research - Recherche Opérationnelle (1995)

  • Volume: 29, Issue: 1, page 35-57
  • ISSN: 0399-0559

How to cite

top

Carrizosa, E., et al. "The generalized Weber problem with expected distances." RAIRO - Operations Research - Recherche Opérationnelle 29.1 (1995): 35-57. <http://eudml.org/doc/105096>.

@article{Carrizosa1995,
author = {Carrizosa, E., Conde, E., Muñoz-Marquez, M., Puerto, J.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {average distances; regional facilities; generalized Weber problem},
language = {eng},
number = {1},
pages = {35-57},
publisher = {EDP-Sciences},
title = {The generalized Weber problem with expected distances},
url = {http://eudml.org/doc/105096},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Carrizosa, E.
AU - Conde, E.
AU - Muñoz-Marquez, M.
AU - Puerto, J.
TI - The generalized Weber problem with expected distances
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 1
SP - 35
EP - 57
LA - eng
KW - average distances; regional facilities; generalized Weber problem
UR - http://eudml.org/doc/105096
ER -

References

top
  1. 1. A. A. ALY and A. S. MARUCHECK, Generalized Weber Problem with Rectangular Regions, Journal of Operational Research Society, 1982, 33, pp. 983-989. Zbl0492.90026
  2. 2. M. BAZARAA and C. M. SHETTY, Nonlinear Programming: Theory and Algorithms, Wiley, 1979. Zbl1140.90040MR533477
  3. 3. R. G. BLAND, D. GOLDFARB and M. J. TODD, The ellipsoid method: A survey. Operations Research, 1981, 29, pp. 1039-1091. Zbl0474.90056MR641676
  4. 4. C. D. BENNETT and A. MIRAKHOR, Optimal Facility Location with respect to several Regions, Journal of Regional Science, 1974, 14, pp. 131-136. 
  5. 5. Z. DREZNER, Bounds on the optimal Location to the Weber Problem Under Conditions of Uncertainty, Journal of Operational Research Society, 1979, 30, pp. 923-931. Zbl0417.90093MR549701
  6. 6. Z. DREZNER, Sensitivity Analysis of the Optimal Location of A Facility, Naval Research Logistic Quaterly, 1985, 32, pp. 209-224. Zbl0578.90022MR785092
  7. 7. Z. DREZNER, Location of Regional Facilities, Naval Research Logistic Quaterly, 1986, 33, pp. 523-529. Zbl0593.90029
  8. 8. Z. DREZNER and G. O. WESOLOSWKY, Optimal Location of a Demand Facility Relative to Area Demand, Naval Research Logistic Quaterly, 1980, 27, pp. 199-206. Zbl0443.90028MR574047
  9. 9. Z. DREZNER and G. O. WESOLOSWKY, Optimum Location Probabilities in the lp distance Weber Problem. Transportation Science, 1981, 75, pp. 85-97. 
  10. 10. R. DURIER and C. MICHELOT, Geometrical Properties of the Fermat-Weber Problem, European Journal of Operational Research, 1985, 20, pp. 332-343. Zbl0564.90013MR800909
  11. 11. R. L. FRANCIS and J. WHITE, Facility Layout and Location, Prentice Hall, Englewood Cliffs, 1974. 
  12. 12. M. GROTSCHEL, L. LOVASZ and A. SCHRIJVER, The Ellipsoid Method and Combinatorial Optimization, Springer-Verlag, 1986. Zbl0492.90056
  13. 13. A. D. IOFFE and V. L. LEVIN, Subdifferentials of Convex Functions, Trans. Moscow Math. Soc., 1972, 26, pp. 1-72. Zbl0281.46039MR372610
  14. 14. H. JUEL, Bounds in the Generalized Weber Problem Under Conditions of Uncertainty, Operational Research 1981, 29, pp. 1219-1227. Zbl0474.90035MR641683
  15. 15. D. KENDALL, Some Problems in the Theory of Queues, Journal of the Royal Statistical Society Series B, 1951, 13, pp. 151-153. Zbl0045.07801MR47944
  16. 16. T. KOSHIZUKA and O. KURITA, Approximate formulas of average distances associated with regions and their applications to Location Problems, Mathematical Programming, 1991, 52, pp. 99-123. Zbl0733.90042MR1111082
  17. 17. R. F. LOVE, A Computational Procedure for Optimally Locating a Facility respect to Several Rectangular Regions, Journal of Regional Science, 1972, 12, pp. 233-242. 
  18. 18. A. S. MARUCHECK and A. A. ALY, An Efficient Algorithm for the Location-Allocation Problem with Rectangular Regions, Naval Research Logistic Quaterly, 1981, 28, pp. 309-323. Zbl0462.90029
  19. 19. C. MICHELOT, The Mathematics of Continuous Location, in Special holde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), University of the Aegean/University of Liverpool, 1993, pp. 59-83. 
  20. 20. F. PLASTRIA, Continuous Location Anno, 1992, a Progress Report, in Special Isolde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), 1993, pp. 85-127. 
  21. 21. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970. Zbl0932.90001MR274683
  22. 22. J. E. WARD and R. E. WENDELL, A new Norm for Measuring Distance which yields linear Location Problems, Operations Research, 1980, 28, pp. 836-844. Zbl0443.90029
  23. 23. J. E. WARD and R. E. WENDELL, Using block norms for location modelling, Operations Research, 1985, 33, pp. 1074-1090. Zbl0582.90026MR806920
  24. 24. R. E. WENDELL and A. P. HURTER, Location Theory, Dominance and Convexity, Operations Research, 1973, 21, pp. 314-320. Zbl0265.90040MR351409

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.