# Weyl-Heisenberg frame in $p$-adic analysis

Minggen Cui^{[1]}; Xueqin Lv^{[2]}

- [1] Harbin Institute of Technology Department of Mathematics WEN HUA XI ROAD WEIHAI Shan Dong, 264209 P.R.China
- [2] Harbin Normal University Department of Information Science HE XING ROAD Harbin HeiLongJiang, 150001 P.R.China

Annales mathématiques Blaise Pascal (2005)

- Volume: 12, Issue: 1, page 195-203
- ISSN: 1259-1734

## Access Full Article

top## Abstract

top## How to cite

topCui, Minggen, and Lv, Xueqin. "Weyl-Heisenberg frame in $p$-adic analysis." Annales mathématiques Blaise Pascal 12.1 (2005): 195-203. <http://eudml.org/doc/10511>.

@article{Cui2005,

abstract = {In this paper, we establish an one-to-one mapping between complex-valued functions defined on $\{R^+\}\cup \lbrace 0\rbrace $ and complex-valued functions defined on $p$-adic number field $Q_p$, and introduce the definition and method of Weyl-Heisenberg frame on hormonic analysis to $p$-adic anylysis.},

affiliation = {Harbin Institute of Technology Department of Mathematics WEN HUA XI ROAD WEIHAI Shan Dong, 264209 P.R.China; Harbin Normal University Department of Information Science HE XING ROAD Harbin HeiLongJiang, 150001 P.R.China},

author = {Cui, Minggen, Lv, Xueqin},

journal = {Annales mathématiques Blaise Pascal},

language = {eng},

month = {1},

number = {1},

pages = {195-203},

publisher = {Annales mathématiques Blaise Pascal},

title = {Weyl-Heisenberg frame in $p$-adic analysis},

url = {http://eudml.org/doc/10511},

volume = {12},

year = {2005},

}

TY - JOUR

AU - Cui, Minggen

AU - Lv, Xueqin

TI - Weyl-Heisenberg frame in $p$-adic analysis

JO - Annales mathématiques Blaise Pascal

DA - 2005/1//

PB - Annales mathématiques Blaise Pascal

VL - 12

IS - 1

SP - 195

EP - 203

AB - In this paper, we establish an one-to-one mapping between complex-valued functions defined on ${R^+}\cup \lbrace 0\rbrace $ and complex-valued functions defined on $p$-adic number field $Q_p$, and introduce the definition and method of Weyl-Heisenberg frame on hormonic analysis to $p$-adic anylysis.

LA - eng

UR - http://eudml.org/doc/10511

ER -

## References

top- MingGen Cui, GuangHong Gao, On the wavelet transform in the field ${\mathbb{Q}}_{p}$ of p-adic Numbers, Applied and Computational Hormonic Analysis 13 (2002), 162-168 Zbl1022.42025MR1942750
- MingGen Cui, YanYing Zhang, The Heisenberg Uncertainty Relation In Harmonic Analysis On p-adic Numbers Field Zbl1160.42321
- HuanMin Yao MingGen Cui, HuanPing Liu, The Affine Frame In $p$-adic Analysis, Annales Mathématiques Blaise Pascal 10 (2003), 297-303 Zbl1066.42501MR2031273
- S.V Kozyrev, Wavelet theory as p-adic spectral analysis, Izv.Russ.Akad.Nauk,Ser 2 (2002), 149-158 Zbl1016.42025MR1918846
- V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic Analysis and Mathematical Physics, (1994), World Scientific Zbl0812.46076MR1288093

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.