On globally solving linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method
Thaï Quynh Phong; Le Thi Hoai An; Pham Dinh Tao
RAIRO - Operations Research - Recherche Opérationnelle (1996)
- Volume: 30, Issue: 1, page 31-49
- ISSN: 0399-0559
Access Full Article
topHow to cite
topThaï Quynh Phong, Le Thi Hoai An, and Pham Dinh Tao. "On globally solving linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method." RAIRO - Operations Research - Recherche Opérationnelle 30.1 (1996): 31-49. <http://eudml.org/doc/105118>.
@article{ThaïQuynhPhong1996,
author = {Thaï Quynh Phong, Le Thi Hoai An, Pham Dinh Tao},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {global minimization; indefinite quadratic function; bounded polyhedral set; decomposition branch-and-bound approach; convex underestimating function},
language = {eng},
number = {1},
pages = {31-49},
publisher = {EDP-Sciences},
title = {On globally solving linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method},
url = {http://eudml.org/doc/105118},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Thaï Quynh Phong
AU - Le Thi Hoai An
AU - Pham Dinh Tao
TI - On globally solving linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 1
SP - 31
EP - 49
LA - eng
KW - global minimization; indefinite quadratic function; bounded polyhedral set; decomposition branch-and-bound approach; convex underestimating function
UR - http://eudml.org/doc/105118
ER -
References
top- 1. LE T. H. AN, Analyse numérique des algorithmes de l'Optimisation d.c. Approches locales et globales. Codes et simulations numériques en grande dimension. Applications. Thèse de Doctorat de l'Université de Rouen, France, 1994.
- 2. LE T. H. AN, PHAM D. TAO and L. D. Muu, Numerical solution for Optimization over the Efficient set by d.c. optimization algorithm, To appear in Opérations Research Letters. Zbl0871.90074
- 3. J. E. FALK and R. M. SOLAND, An algorithm for separable non convex programming problems, Management Science, 1969, 75, pp. 550-569. Zbl0172.43802MR389214
- 4. R. FLETCHER, Practical methods of Optimization (second edition), John Wiley & Sons, New York, 1991. Zbl0905.65002MR955799
- 5. C. A. FLOUDAS, P. M. PARDALOS, A collection of test problems for constrained global optimization algorithms, In G. Goos and J. HARTMANIS, editors, Lecture notes in Computer Science, 445, Springer-Verlag, 1987. Zbl0718.90054
- 6. P. E. GILL, W. MURRAY and M. H. WRIGHT, Practical optimization, Academic Press, 1981. Zbl0503.90062MR634376
- 7. R. HORST, T. Q. PHONG, N. V. THOAI and J. de VRIES, On solving a d.c. programming problem by a sequence of linear programs, 7. of Global Optimization, 1991, I, pp. 183-203. Zbl0755.90076MR1263590
- 8. R. HORST and H. TUY, Global Optimization: Deterministic Approaches, Springer-Verlag, Berlin, New York, 2e edition, 1993. Zbl0704.90057MR1274246
- 9. B. KALANTARI and J. B. ROSEN, Algorithm for global minimization of linearly constrained concave quadratic functions, Mathematics of Opérations Research, 1987 72, pp. 544-561. Zbl0638.90081MR906423
- 10. J. J. MORE and D. C. SORENSEN, Computing a trust region step, SIAM J. Sel Statist. Comput., 1981. 4, pp.553-572. Zbl0551.65042MR723110
- 11. L. D. Muu, T. Q. PHONG and PHAM DINH TAO, Decomposition methods for solving a class of nonconvex programming problems dealing with bilinear and quadratic functions, Computational Optimization and Application, 1995, 4, pp. 203-216. Zbl0834.90101MR1329604
- 12. P. M. PARDALOS, J. H. GLICK and J. B. ROSEN, Global optimization of indefinite quadratic problems, Computing, 1987, 39, pp. 281-291. Zbl0627.65072MR923455
- 13. A.T. PHILLIPS and J. B. ROSEN, A parallel algorithm forconstrained concave quadratic global minimization, Mathematical Programming, 1988, 42, pp.412-448. Zbl0665.90071MR976130
- 14. A.T. PHILLIPS and J. B. ROSEN, A parallel algorithm forpartially separable non-convex global minimization: linear constraints, Annals of Operations Research, 1990, 25, pp. 101-118. Zbl0723.90063MR1084425
- 15. T. Q. PHONG, Analyse numérique des algorithmes d'Optimisation globale. Codes et simulations numériques. Applications. Thèse de Doctorat de l'Université de Rouen, France, 1994.
- 16. J. B. ROSEN, Minimization of linearly constrained concave function by partition of feasible domain, Math. Operations Research, 1983, 8, pp. 215-230. Zbl0526.90072MR707054
- 17. J. B. ROSEN and P. M. PARDALOS, Global minimization of large scale constrained quadratic problems by separable programming, Mathematical Programming, 1986, 34(2), PP. 163-174. Zbl0597.90066MR838476
- 18. PHAM D. TAO, Contribution à la théorie de normes et ses applications à l'analyse numérique. Thèse de doctorat d'état es sciences, USMG, Grenoble, France, 1981.
- 19. PHAM D. TAO, Convergence of subgradient method for Computing the bound norm of matrices, Linear Alg. and its Appl., 1984, 62, pp. 163-182. Zbl0563.65029MR761065
- 20. PHAM D. TAO, Algorithmes de calcul du maximum d'une forme quadratique sur la boule unité de la norme du maximum, Numerische Mathematik, 1985, 45, pp. 377-440. Zbl0531.65022MR769247
- 21. PHAM D. TAO, Algorithms for solving a class of nonconvex optimization problems. subgradient methods , Fermat days 85. Mathematics for Optimization, Elsevier Science Publishers B. V. North-Holland, 1986. Zbl0638.90087
- 22. PHAM D. TAO, Some new results in nonconvex nondifferentiable optimization. 6th French-German Conference on Optimization, Lambrech, Germany, 2/6-8/6 1991.
- 23. PHAM D. TAO and EL BERNOUSSI, Duality in d.c. (difference of convex functions) optimization. subgradient methods, Trends in Mathematical Optimization, volume 84 of International Series of Numerische Mathematik, Birkhauser, 1988. Zbl0634.49009MR1017958
- 24. PHAM D. TAO and LE T. H. AN, D. C. (difference of convex functions) optimization algorithms (DCA) for globally minimizing nonconvex quadratic forms on euclidean balls and sphères, To appear in Opérations Research Letters. Zbl0876.90071
- 25. H. TUY, Global minimization of a difference of two convex functions, Mathematical Programming Study, 1987, 30, pp. 150-182. Zbl0619.90061MR874136
- 26. H. TUY, The complementary convex structure in global optimization, J. of Global Optimization, 1992, 2, pp.21-40. Zbl0787.90091MR1266894
- 27. S. A. VAVASIS, Approximation algorithms for indefinite quadratic programming, Mathematical Programming, 1992, 57, pp. 279-311. Zbl0845.90095MR1195028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.