Solution behaviour for parameter-dependent quasi-variational inequalities

J. V. Outrata

RAIRO - Operations Research - Recherche Opérationnelle (1996)

  • Volume: 30, Issue: 4, page 399-415
  • ISSN: 0399-0559

How to cite

top

Outrata, J. V.. "Solution behaviour for parameter-dependent quasi-variational inequalities." RAIRO - Operations Research - Recherche Opérationnelle 30.4 (1996): 399-415. <http://eudml.org/doc/105136>.

@article{Outrata1996,
author = {Outrata, J. V.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {stability analysis; parameter-dependent quasi-variational inequalities; perturbed solution; parametric quasi-variational inequality},
language = {eng},
number = {4},
pages = {399-415},
publisher = {EDP-Sciences},
title = {Solution behaviour for parameter-dependent quasi-variational inequalities},
url = {http://eudml.org/doc/105136},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Outrata, J. V.
TI - Solution behaviour for parameter-dependent quasi-variational inequalities
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 4
SP - 399
EP - 415
LA - eng
KW - stability analysis; parameter-dependent quasi-variational inequalities; perturbed solution; parametric quasi-variational inequality
UR - http://eudml.org/doc/105136
ER -

References

top
  1. 1. J.-P. AUBIN and I. EKELAND, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066MR749753
  2. 2. C. BAIOCCHI and A. CAPELO, Variational and Quasi-Variational Inequalities, Applications to Free Boundary Problems, Wiley, New York, 1984. Zbl0551.49007MR745619
  3. 3. D. CHAN and J. S. PANG, The generalized quasi-variational problem, Math. Oper. Res., 1982, 7, pp. 211-222. Zbl0502.90080MR665558
  4. 4. F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
  5. 5. P. T. HARKER and J. S. PANG, Finite-dimensional variational inequality and nonlinear complementary problems: A survey of theory, algorithms and applications, Math. Programming, 1990, 48, pp. 161-220. Zbl0734.90098MR1073707
  6. 6. P. T. HARKER, Generalized Nash games and quasi-variational inequalities, European J. Oper. Res., 1991, 54, pp. 81-94. Zbl0754.90070
  7. 7. J. HASLINGER and P. D. PANAGIOTOPOULOS, The reciprocal variational approach to the Signorini problem with friction. Approximation results, Proc. Royal Society of Edinburg, 1984, 98A, pp.365-383. Zbl0547.73096MR768357
  8. 8. M. KOČVARA and J. V. OUTRATA, On optimization of Systems governed by implicit complementarity problems. Numer. Funct. Analysis and Optimization, 1994, 15, pp. 869-887. Zbl0813.73048MR1305577
  9. 9. B. KUMMER, The inverse of a Lipschitz function in Rn: Complete characterization by directional derivatives, IIASA-Working paper WP-89-084. 
  10. 10. B. KUMMER, Newton's method based on generalized derivatives for nonsmooth functions: Convergence analysis, in Proc. 6th French-German Colloquium on Optimization, Lambrecht, FRG, 1991, Lecture Notes in Economics and Mathematical Systems, vol.382, Springer, Berlin, 1992, pp.171-194. Zbl0768.49012MR1229731
  11. 11. J. KYPARISIS, Solution differentiability for variational inequalities, Math. Programming, 1990, 48, pp. 285-301. Zbl0727.90082MR1073712
  12. 12. J. KYPARISIS, Ch. M. IP, Solution behaviour for parametric implicit complementarity problems, Math. Programming, 1992, 56, pp. 65-70. Zbl0762.90075MR1175559
  13. 13. U. MOSCO, Implicit variational problems and quasi-variational inequalities, in Proc. Summer School "Nonlinear operators and the Calculas of Variations", Bruxelles, Belgium, 1975, Lecture Notes in Mathematics, Vol. 543, Springer, Berlin, 1976, pp. 83-156. Zbl0346.49003MR513202
  14. 14. J. V. OUTRATA, On optimization problems with variational inequality constraints, SIAM J. Optim., 1994, 4, pp. 340-357. Zbl0826.90114MR1273763
  15. 15. J. V. OUTRATA and J. ZOWE, A numerical approach to optimization problems with variational inequality constraints, Math. Programming, 1995, 68, pp. 105-130. Zbl0835.90093MR1312107
  16. 16. J. V. OUTRATA and J. ZOWE, A Newton method for a class of quasi-variational inequalities, Comp. Optimization and Applications, 1995, 4, pp. 5-21. Zbl0827.49007MR1314522
  17. 17. J. S. PANG, The implicit complementarity problem, in Proc. Symp. on Nonlinear Programming, Madison, Wisc., 1980, Academic Press, New York, 1981, pp. 487-518. Zbl0534.90090MR663390
  18. 18. J. S. PANG, On the convergence of a basic iterative method for the implicit complementarity problems, J. of Optimiz. Theory and Applications, 1982, 37, pp. 149-162. Zbl0482.90084MR663519
  19. 19. S. M. ROBINSON, Strongly regular generalized equations, Math. Oper. Res., 1980, 5, pp. 43-62. Zbl0437.90094MR561153
  20. 20. S. M. ROBINSON, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res., 1991, 16, pp. 282-309. Zbl0746.46039MR1106803
  21. 21. S. SCHOLTES, Introduction to piecewise differentiable equations, Preprint No. 53/ 1994, Inst. Für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe. MR1419911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.