The disjoint cliques problem
Klaus Jansen; Petra Scheffler; Gerhard Woeginger
RAIRO - Operations Research - Recherche Opérationnelle (1997)
- Volume: 31, Issue: 1, page 45-66
- ISSN: 0399-0559
Access Full Article
topHow to cite
topJansen, Klaus, Scheffler, Petra, and Woeginger, Gerhard. "The disjoint cliques problem." RAIRO - Operations Research - Recherche Opérationnelle 31.1 (1997): 45-66. <http://eudml.org/doc/105140>.
@article{Jansen1997,
author = {Jansen, Klaus, Scheffler, Petra, Woeginger, Gerhard},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {interval graph; cograph; directed path graph; partial -trees; pairwise disjoint cliques; NP-completeness},
language = {eng},
number = {1},
pages = {45-66},
publisher = {EDP-Sciences},
title = {The disjoint cliques problem},
url = {http://eudml.org/doc/105140},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Jansen, Klaus
AU - Scheffler, Petra
AU - Woeginger, Gerhard
TI - The disjoint cliques problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 1
SP - 45
EP - 66
LA - eng
KW - interval graph; cograph; directed path graph; partial -trees; pairwise disjoint cliques; NP-completeness
UR - http://eudml.org/doc/105140
ER -
References
top- [Arn] S. ARNBORG, Efficient algorithms for combinatorial problems on graphs with bounded decomposability. A survey, BIT, 1985, 25, pp. 2-23. Zbl0573.68018MR785803
- [BGLR] M. BELLARE, S. GOLDWASSER, C. LUND and A. RUSSELL, Efficient probabilistically checkable proofs and applications to approximation, 25th ACM Symposium on the Theory of Computing, 1993, pp. 294-304. Zbl1310.68083
- [BLW] M. W. BERN, E. L. LAWLER and A. L. R. WONG, Linear-time computations of subgraphs of decomposable graphs, Journal of Algorithms, 1987, 8,pp. 216-235. Zbl0618.68058MR890873
- [Bo1] H. L. BODLAENDER, A linear time algorithm for finding tree-decomposition of small treewidth, 25th Symposium on the Theory of Computing, 1993, pp. 226-234. Zbl0864.68074
- [Bo2] H. L. BODLAENDER, A tourist guide through treewidth, Acta Cybernetica, 1993, 11, pp. 1-23. Zbl0804.68101MR1268488
- [BL] S. BOOTH and S. LUEKER, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci., 1976, 13, pp. 335-379. Zbl0367.68034MR433962
- [Br] A. BRANDSTÄDT, Special graph classes - a survey. Report SM-DU-199, Universität-Gesamthochschule Duisburg, 1991.
- [CPS] D. G. CORNEIL, Y. PERL and L. K. STEWART, A linear recognition algorithm for cographs, SIAM J. Comput, 1985, 4, pp. 926-934. Zbl0575.68065MR807891
- [Di] P. F. DIETZ, Intersection graph algorithms, Ph. D. thesis, Comput. Sci. Dept., Cornell Univ., Ithaka, NY 1984.
- [Fr] A. FRANK, On chain and antichain families of a partially ordered set, J. Combinatorial Theory (B), 1980, 29, pp. 176-184. Zbl0443.06003MR586432
- [GJ] M. R. GAREY and D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979. Zbl0411.68039MR519066
- [Ga] F. GAVRIL, Algorithms for maximum k-colorings and k-coverings of transitive graphs, Networks, 1987, 17, pp. 465-470. Zbl0642.05021MR912032
- [Go] M. C. GOLUMBIC, Algorithm graph theory and perfect graphs, Academic Press, New York, 1980. Zbl0541.05054MR562306
- [Ja] K. JANSEN, Scheduling of incompatible jobs on unrelated machines, International Journal of Foundations of Computer Science, 1993, 4, pp. 275-291. Zbl0799.90066MR1279494
- [LY] C. LUND and M. YANNAKAKIS, On the hardness of approximating minimization problems, 25th ACM Symposium on the Theory of Computing, 1993, pp. 286-293. Zbl0814.68064MR1371491
- [MV] S. MICALI and V. V. VAZIRANI, An O(√!V!!E!) algorithm for finding maximum matchings in general graphs, in: Proc. 21st Ann. IEEE Symp. Foundations of Computer Science, Long Beach, California, 1980, pp. 17-27.
- [RS] N. ROBERTSON and P. SEYMOUR, Graph Minors. II. Algorithmic aspects of tree-width, Journal of Algorithms, 1986, 7, pp. 309-322. Zbl0611.05017MR855559
- [Sch] P. SCHEFFLER, Die Baumweite von Graphen als Maß für die Kompliziertheit algorithmischer Probleme. Report RMATH-04/89, K-Weierstraß-Institut für Mathematik, Berlin, 1989. Zbl0684.68061MR1004243
- [YG] M. YANNAKAKIS and F. GAVRIL, The maximum k-colorable subgraph problem for chordal graphs, Information Processing Letters, 1987, 24, pp. 133-137. Zbl0653.68070MR882643
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.