Pénalisation dans l'optimisation sur l'ensemble faiblement efficient

S. Bolintinéanu; M. El Maghri

RAIRO - Operations Research - Recherche Opérationnelle (1997)

  • Volume: 31, Issue: 3, page 295-310
  • ISSN: 0399-0559

How to cite

top

Bolintinéanu, S., and El Maghri, M.. "Pénalisation dans l'optimisation sur l'ensemble faiblement efficient." RAIRO - Operations Research - Recherche Opérationnelle 31.3 (1997): 295-310. <http://eudml.org/doc/105152>.

@article{Bolintinéanu1997,
author = {Bolintinéanu, S., El Maghri, M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {bilinear programming; post-Pareto analysis; weakly efficient set; global optimization; penalty method},
language = {fre},
number = {3},
pages = {295-310},
publisher = {EDP-Sciences},
title = {Pénalisation dans l'optimisation sur l'ensemble faiblement efficient},
url = {http://eudml.org/doc/105152},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Bolintinéanu, S.
AU - El Maghri, M.
TI - Pénalisation dans l'optimisation sur l'ensemble faiblement efficient
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 3
SP - 295
EP - 310
LA - fre
KW - bilinear programming; post-Pareto analysis; weakly efficient set; global optimization; penalty method
UR - http://eudml.org/doc/105152
ER -

References

top
  1. [ARM] P. ARMAND and C. MALIVERT, Determination of the Efficient Set in Multiobjective Linear Programming, J. of Optimization Theory and Applications, 1991, 70, p.467-489. Zbl0793.90064MR1124774
  2. [BEN 1] H. P. BENSON, Optimisation over the Efficient Set, Discussion Paper No. 35, Center for Econometrics and Decision Sciences, University of Florida, Gainesville, Florida, 1981. Zbl0797.90058
  3. [BEN 2] H. P. BENSON, Optimization over the Efficient Set, J. of Mathematical Analysis and Applications, 1984, 98, p. 562-580. Zbl0534.90077MR730527
  4. [BEN 3] H. P. BENSON, An algorithm for Optimizing over the Weakly-Efficient Set, European J. of Operational Research, 1986, 25, p.192-199. Zbl0594.90082MR841149
  5. [BEN 4] H. P. BENSON, An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient Set, J. Of Global Optimization, 1991, 1, p. 83-104. Zbl0739.90056MR1263840
  6. [BEN 5] H. P. BENSON, A Finite, Nonadjacent Extreme Point Search Algorithm for Optimization over the Efficient Set, J. of Optimization Theory and Applications, 1992, 73, p. 47-64. Zbl0794.90048MR1152234
  7. [BEN 6] H. P. BENSON, A Face Search Heuristic Algorithm for Optimizing over the Efficient Set, Naval Research Logistics, 1993, 40, p. 103-116. Zbl0780.90080MR1201781
  8. [BEN 7] H. P. BENSON, A Bisection-Extreme Point Search Algorithm for Optimizing over the Efficient Set in the Linear Dependence Case, J. of Global Optimization, 1993, 3, p. 95-111. Zbl0799.90101MR1264367
  9. [BEN 8] H. P. BENSON, Optimization over the Efficient Set: Four Special Cases, J. of Optimization Theory and Applications, 1994, 80, n° 1. Zbl0797.90058MR1256134
  10. [BEN 9] H. P. BENSON, A Finite Algorithm for Concave Minimization over a Polyedron, Naval Research Logistics Quaterly, 1985, 32, p. 165-177. Zbl0581.90080MR778303
  11. [BOL 1] S. BOLINTINÉANU, Minimization of Quasi-Concave Function over an Efficient Set, Math. Programming, 1993, 61, p. 89-110. Zbl0799.90100MR1236426
  12. [BOL 2] S. BOLINTINÉANU, Optimality Conditions for Minimization over the (Weakly or Properly) Efficient Set, J. of Mathematical Analysis and Applications, 1993173, n° 2, p. 523-541. Zbl0796.90044MR1209337
  13. [BOL 3] S. BOLINTINÉANU, Necessary Conditions for Nonlinear Suboptimization over the Weakly-Efficient Set, J. of Optimization Theory and Applications, 1993, 78, n° 3. Zbl0794.90049MR1240437
  14. [CAB] A. V. CABOT, Variations on a Cutting Plane Method for Solving Concave Minimization Problems with Linear Constraints, Naval Research Logistics Quarterly, 1974, 21, p. 265-274. Zbl0348.90131MR349225
  15. [DAU] J. P. DAUER, Optimisation over the Efficient Set Using an Active Constraint Approach, Zeitschrift fur Opérations Research, 1991, 35, p. 185-195. Zbl0734.90081MR1114291
  16. [DES] M. I. DESSOUK, M. GHIASSIand W. J. DAVIS, Determining the Worst Value of an Objective Function within the Nondominated Solutions in Multiple Objective Linear Programming, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, III., 1979. 
  17. [FAL] J. E. FALK and K. R. HOFFMANN, A Successive Underestimation Method for Concave Minimization Problems, Math. of Operations Research, 1976, 1, p. 251-259. Zbl0362.90082
  18. [GAL] G. GALLO and A. ÜLKÜCCÜ, Bilinear Programming: An Exact Algorithm, Math. Programming, 1977, 12, p. 173-194. Zbl0363.90086MR449682
  19. [HOR] R. HORST and H. TUY, Global Optimisation: Deterministic Approches, Springer-Verlag, Berlin, Germany, Second Edition, 1993. Zbl0704.90057MR1274246
  20. [ISE] H. ISERMANN and R. E. STEUER, Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set, European J. of Operational Research, 1987, 33, p. 91-97. Zbl0632.90074MR923641
  21. [KON] H. KONNO, A Cutting Plane Algorithm for Solving Bilincar Programs, Math. Programming, 1976, 11, p. 14-27. Zbl0353.90069MR441328
  22. [LUC] D.T. LUC, Theory of Vector Optimization: Lectures Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1989. Zbl0654.90082MR1116766
  23. [LUE] D. G. LUENBERGER, Linear and Nonlinear Programming, Addison Wesley Publishing Company, Reading, Massachusetts, Second Edition, 1984. Zbl0571.90051MR2012832
  24. [MAJ] A. MAJTHAYand A. WHINSTON, Quasiconcave Minimization Subject a Linear Constraints, Discrete Math., 1974. 9, p. 35-59. Zbl0301.90037MR378828
  25. [MUU] L. D. MUU, A Method for Optimization of a Linear over the Efficient Set, Institute of Mathematics, Hanoi, Preprint 15, 1991. Zbl0743.90101
  26. [PHI] J. PHILIP, Algorithm for the Maximization Problem, Math. Programming, 1972, 2, p. 207-229. Zbl0288.90052MR302205
  27. [ROC] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. Zbl0932.90001MR274683
  28. [ROS] J. B. ROSEN, Global Minimization of a Linearly Constrained Concave Function by Partition of Feasible Domain, Math, of Operations Research, 1983, 8, p. 215-230. Zbl0526.90072MR707054
  29. [SAW] Y. SAWARAGI, H. NAKAYAMA and T. TANINO, Theory of Multiobjective Optimization, Academic Press, Orlando, Florida, 1985. Zbl0566.90053MR807529
  30. [TAH] H. A. TAHA, Concave Minimization over a Convex Polyedron, Naval Research Logistics Quarterly, 1973, 20, p. 533-548. Zbl0286.90052MR337007
  31. [TUY] H. TUY, Concave Programming under Linear Constraints, Soviet. Math., 1964, 5, p. 1437-1460. Zbl0132.40103
  32. [ZWA] P. B. ZWART, Global Miminization of a Convex Function with Linear Inequality Constraints, Operations Research, 1974, 22, p. 602-609. Zbl0322.90049MR452691

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.