Three easy special cases of the euclidean travelling salesman problem

V. G. Deĭneko; J. A. Van der Veen; R. Rudolf; G. J. Woeginger

RAIRO - Operations Research - Recherche Opérationnelle (1997)

  • Volume: 31, Issue: 4, page 343-362
  • ISSN: 0399-0559

How to cite

top

Deĭneko, V. G., et al. "Three easy special cases of the euclidean travelling salesman problem." RAIRO - Operations Research - Recherche Opérationnelle 31.4 (1997): 343-362. <http://eudml.org/doc/105155>.

@article{Deĭneko1997,
author = {Deĭneko, V. G., Van der Veen, J. A., Rudolf, R., Woeginger, G. J.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {distance matrix; travelling salesman problem; Demidenko conditions; Kalmanson conditions; Supnick conditions; polynomial time recognition algorithms},
language = {eng},
number = {4},
pages = {343-362},
publisher = {EDP-Sciences},
title = {Three easy special cases of the euclidean travelling salesman problem},
url = {http://eudml.org/doc/105155},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Deĭneko, V. G.
AU - Van der Veen, J. A.
AU - Rudolf, R.
AU - Woeginger, G. J.
TI - Three easy special cases of the euclidean travelling salesman problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 4
SP - 343
EP - 362
LA - eng
KW - distance matrix; travelling salesman problem; Demidenko conditions; Kalmanson conditions; Supnick conditions; polynomial time recognition algorithms
UR - http://eudml.org/doc/105155
ER -

References

top
  1. 1. K. S. BOOTH and G. S. LUEKER, Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, 1976, 13, pp.335-379. Zbl0367.68034MR433962
  2. 2. V. G. DEĭNEKO, R. RUDOLF and G. J. WOEGINGER, On the Recognition of Permuted Supnick and Incomplete Monge Matrices, SFB Report 05, Spezialforschungsbereich, "Optimierung und Kontrolle", TU Graz, Austria. Zbl0858.68042
  3. V. M. DEMIDENKO, A special case of travelling salesman problems, Izv.Akad. Nauk. BSSR, Ser.fiz.-mat nauk, 1976, 5, pp. 28-32 (in Russian). Zbl0366.90090MR456442
  4. 4. M. M. FLOOD, The traveling salesman problem, Operations Research, 1956, 4, pp. 61-75. MR78639
  5. 5. P. C. GILMORE, E. L. LAWLER and D. B. SHMOYS, Well-solved special cases, Chapter 4 in [8], pp. 87-143. Zbl0631.90081MR811471
  6. 6. C. H. PAPADIMITRIOU, The Euclidean travelling salesman problem is NP-complete, Theoretical Computer Science, 1977, 4, pp.237-244. Zbl0386.90057MR455550
  7. 7. K. KALMANSON, Edgeconvex circuits and the travelling salesman problem, Canadian Journal of Mathematics, 1975, 27, pp. 1000-1010. Zbl0284.05117MR396329
  8. 8. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN and D. B. SHMOYS, The travelling salesman problem, Wiley, Chichester, 1985. Zbl0562.00014MR811467
  9. 9. L. LOVÁSZ, Combinatorial Problems and Exercices, North-Holland, Amsterdam, 1978. Zbl0785.05001
  10. 10. F. P. PREPARATA and M. I. SHAMOS, Computational Geometry - an Introduction, Springer Verlag, New York, 1985. Zbl0759.68037MR805539
  11. 11. L. V. QUINTAS and F. SUPNICK, On some properties of shortest Hamiltonian circuits, American Mathematical Monthly, 1965, 72, pp. 977-980. Zbl0134.40603MR188872
  12. 12. F. SUPNICK, Extreme Hamiltonian lines, Annals of Math., 1957, 66, pp. 179-201. Zbl0078.16502MR88401
  13. 13. J. A. van der VEEN, A new class of pyramidally solvable symmetric traveling salesmas problems, SIAM J. Disc. Math., 1994, 7, pp. 585-592. Zbl0813.90124MR1299086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.