Résolution de programmes linéaires entiers ou mixtes à l'aide de la forme normale de Hermite
RAIRO - Operations Research - Recherche Opérationnelle (1997)
- Volume: 31, Issue: 4, page 399-427
- ISSN: 0399-0559
Access Full Article
topHow to cite
topMaublanc, J., and Quilliot, A.. "Résolution de programmes linéaires entiers ou mixtes à l'aide de la forme normale de Hermite." RAIRO - Operations Research - Recherche Opérationnelle 31.4 (1997): 399-427. <http://eudml.org/doc/105158>.
@article{Maublanc1997,
author = {Maublanc, J., Quilliot, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {Hermite normal form decompositions; cutting plane methods; branch and bound methods},
language = {fre},
number = {4},
pages = {399-427},
publisher = {EDP-Sciences},
title = {Résolution de programmes linéaires entiers ou mixtes à l'aide de la forme normale de Hermite},
url = {http://eudml.org/doc/105158},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Maublanc, J.
AU - Quilliot, A.
TI - Résolution de programmes linéaires entiers ou mixtes à l'aide de la forme normale de Hermite
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 4
SP - 399
EP - 427
LA - fre
KW - Hermite normal form decompositions; cutting plane methods; branch and bound methods
UR - http://eudml.org/doc/105158
ER -
References
top- 1. E. B. BALAS, Intersection n-cuts-a new type of cutting planes for integer programming, Operat. Research, 1971, 19, p. 19-39. Zbl0219.90035
- 2. F. L. BAUER, Algorithms 153 Gomory; Comunications of the ACM, 1963, 6, p. 68.
- 3. R. BIXBY et W. CUNNINGHAM, Converting linear programs to network problems; Maths of Operat. Research, 1980, 5, p. 321-357. Zbl0442.90095MR594849
- 4. V. J. BOWMAN et G. L. NEMHAUSER, A finiteness proof for modified Dantzig cuts in integer programming: Naval Research Log Quarter, 1970, 17, p. 309-313. Zbl0215.59001MR275874
- 5. V. J. BOWMAN et G. L. NEMHAUSER, Deep cuts in integer programming; Operat Research, 1971, 8, p. 89-111. MR312902
- 6. M. CARTER, A survey on practical applications of examination timetabling algorithms; Operat Research, 1986, 34, 2, p. 193-302. MR861041
- 7. A. CHARNES et W. COOPER, Management models and industrial applications of linear programming, J. WILEY and sons, 1961. Zbl0107.37004MR157773
- 8. V. CHVATAL, Cutting planes and combinatorics; European Journal of combinatorics, 1985, 6, p. 217-226. Zbl0581.05015MR818595
- 9. R. J. DAKIN, A tree search algorithm for mixed integer programming problems, The Computer Journal, 1965, 8, p. 250-255. Zbl0154.42004MR187937
- 10. P. D. DAMICH, R. KANNAN et L. TROTTER, Hermite normal form computation using modulo determinant arithmetic: Math. Operat. Research, 1987, 12, 1, p. 50-59. Zbl0624.65036MR882842
- 11. J. EDMONDS, F. GILES, Total dual integrality of linear inequality Systems in Progress in Combinatorial Optimization, Acad. Press. Toronto, 1984, p. 117-129. Zbl0555.90078MR771873
- 12. D. FAYARD et G. PLATEAU, An efficient algorithm for the 0-1 knapsack problem, R. M. NAUSS, Management Sciences, 1977, 24, p. 918-919. Zbl0806.90089
- 13. M. GAREY et D. JOHNSSON, Computer and intractability; W. FREEMAN and Co. N.Y., 1979. Zbl0411.68039
- 14. R. GARFINKEL et G. L. NEMHAUSER, Integer programming; J. WILEY and sons, N.Y., 1972. Zbl0259.90022MR381688
- 15. A. M. GEOFFRION, Lagrangean relaxation for integer programming; Math Programming Study 2, 1974, p. 82-114. Zbl0395.90056MR439172
- 16. F. GLOVER, Generalized cuts in Diophantine programming, Management Sciences 13, 1966-1967, p. 254-268. Zbl0158.18701MR202470
- 17. S. GODANO, Méthodes géométriques pour la programmation linéaire, Thèse Université Blaise Pascal, Clermont-Ferrand, 1994.
- 18. R. E. GOMORY, Outlines of an algorithm for integer solutions to linear programs, Bull American Math. Soc., 1958, 64, p. 275-278. Zbl0085.35807MR102437
- 19. R. E. GOMORY, An algorithm for integer solutions to linear programs, Recent Advances in Math. programming. (R. L. GRAVES and P. WOLFE Eds.), Mac Graw Hill, N.Y., 1963, p. 269-302. Zbl0235.90038MR174390
- 20. M. GONDRAN, Un outil pour la programmation en nombres entiers, la méthode des congruences décroissantes : RAIRO 3, 1973, p. 35-54. Zbl0274.90032MR373598
- 21. M. GROTSCHEL, L. LOVACZ et A. SCHRIJVER, The ellipsoid method and combinatorial optimization, Springer-Verlag, Heidelberg, 1986.
- 22. M. HELD et R. KARP, The travelling salesman problem and minimum spanning trees, Operat. Research 18, 1970, p. 1138-1162. Zbl0226.90047MR278710
- 23. A. HOFFMAN et J. KRUSKAL, Integral boundary points of integer polyedra in Linear Inequalities and Related Systems, H. KUHN and A. TUCKER Eds., Princeton Univ. Press, 1986, p. 223-246. Zbl0072.37803
- 24. R. KANNAN et A. BACHEM, Polynomial algorithms for Computing the Smith and Hermite normal forms of an integer matrix; SIAM Journ. Comput 8, 1979, 4, p. 499-507. Zbl0446.65015
- 25. H. LANGMAACK, Algorithm 263 Gomory 1 [H]; Communications of the ACM, 1965, 8, p. 601-602.
- 26. H. LENSTRA, Integer Programming with a flxed number of variables, Maths of Operat. Research, 1983, 8, p. 538-548. Zbl0524.90067
- 27. L. G. PROLL, Certification of algorithm 263A [H] Gomory 1, Comm. ACM 13, 1970, p. 326-327.
- 28. I. ROSEMBERG, On Chvatal's cutting planes in integer programming, Mathematische Operation Forschung und Statistik, 1975, 6, p. 511-522. Zbl0324.90046MR403657
- 29. A. SCHRIJVER, Theory of linear and integer programming, Wiley, Chichester, 1986. Zbl0970.90052MR874114
- 30 A. V. SRINIVASAN, An investigation of some computational aspects of integer programming, JACM 12, 1965, p. 525-535. Zbl0154.42003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.