Duality for increasing positively homogeneous functions and normal sets
RAIRO - Operations Research - Recherche Opérationnelle (1998)
- Volume: 32, Issue: 2, page 105-123
- ISSN: 0399-0559
Access Full Article
topHow to cite
topRubinov, A. M., and Glover, B. M.. "Duality for increasing positively homogeneous functions and normal sets." RAIRO - Operations Research - Recherche Opérationnelle 32.2 (1998): 105-123. <http://eudml.org/doc/105164>.
@article{Rubinov1998,
author = {Rubinov, A. M., Glover, B. M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {2},
pages = {105-123},
publisher = {EDP-Sciences},
title = {Duality for increasing positively homogeneous functions and normal sets},
url = {http://eudml.org/doc/105164},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Rubinov, A. M.
AU - Glover, B. M.
TI - Duality for increasing positively homogeneous functions and normal sets
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1998
PB - EDP-Sciences
VL - 32
IS - 2
SP - 105
EP - 123
LA - eng
UR - http://eudml.org/doc/105164
ER -
References
top- 1. T. M. ABASOV, Normal sets and monotone functions and their applications, J. Comput Mathematics and Mathematical Physics, 1993, 3, (7), pp. 1004-1011 (in Russian). Zbl0799.90102MR1231785
- 2. T. M. ABASOV and A. M. RUBINOV, On a class of H-convex functions, Russian Acad. Sci. Dokl. Math., 1994, 48, pp. 95-97. Zbl0822.26009MR1258649
- 3. J.-P. CROUZEIX, A duality framework in quasiconvex programming, in Generalized Concavity in Optimization and Economics, S. SCHAIBLE and W, T. ZIEMBA (eds.), Academic Press, New York, 1981, pp. 109-130. Zbl0538.90070
- 4. M. D. INTRILLIGATOR, Mathematical Optimization and Economic Theory, Prentice-Hall, Englewood Cliffs, N.J., 1971. Zbl1140.90302MR353945
- 5. S. S. KUTATELADZE and A. M. RUBINOV, Minkowski duality and its applications, Russian Mathematical Surveys, 1972, 27, (3), pp. 137-192. Zbl0261.26010MR394117
- 6. V. L. MAKAROV, M. I. LEVIN and A. M. RUBINOV, Mathematical Economic Theory/Pure and Mixed Types of Economic Mechanisms, Advanced Textbook in Economics, 33, Elsevier, Amsterdam, 1995. Zbl0834.90001MR1311479
- 7. J. E. MARTINEZ-LEGAZ, Quasiconvex duality theory by generalized conjugation methods, Optimization, 1988, 19, pp. 603-652. Zbl0671.49015MR960433
- 8. H. NIKAIDO, Economic Theory and Convex Structures, Academic Press, New York, 1969. Zbl0172.44502
- 9. J.-P. PENOT and M. VOLLE, On quasiconvex duality, Mathematics of Opérations Research, 1990, 15, (4), pp. 597-625. Zbl0717.90058MR1080468
- 10. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton N. J., 1970. Zbl0193.18401MR274683
- 11. A. M. RUBINOV, Superlinear Multivalued Mappings and their Applications to Problems of Mathematical Economics, Leningrad, Nauka, 1980 (in Russian). MR611859
- 12. A. M. RUBINOV B. M. GLOVER and V. JEYAKUMAR, A general approach to dual characterizations of solvability of inequality systems with application, Journal of Convex Analysis, 1995, 2, (1/2), pp. 309-344. Zbl0840.52001MR1363377
- 13. A. M. RUBINOV and B. SHIMSHEK, Conjugate quasiconvex nonnegative functions, Optimization, 1995, 35, pp. 1-22. Zbl0840.90120MR1353357
- 14. R. T. THACH, Global optimality criterion and a duality with zero gap in non-convex optimization, SIAM J. Math. Anal., 1993, 24, pp. 1537-1556. Zbl0793.90057MR1241157
- 15. HOANG TUY, D. C.optimization: theory, methods and algorithms, in Handbook of Global Optimization, eds., R. HORST and P. M. PARDALOS, Kluwer Academic, 1995, pp. 149-216. Zbl0832.90111MR1377085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.