RedInv-SA : a simulated annealing for the quadratic assignment problem

N. M. M. de Abreu; T. M. Querido; P. O. Boaventura-Netto

RAIRO - Operations Research - Recherche Opérationnelle (1999)

  • Volume: 33, Issue: 3, page 249-273
  • ISSN: 0399-0559

How to cite

top

de Abreu, N. M. M., Querido, T. M., and Boaventura-Netto, P. O.. "RedInv-SA : a simulated annealing for the quadratic assignment problem." RAIRO - Operations Research - Recherche Opérationnelle 33.3 (1999): 249-273. <http://eudml.org/doc/105191>.

@article{deAbreu1999,
author = {de Abreu, N. M. M., Querido, T. M., Boaventura-Netto, P. O.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {meta-heuristics; combinatorial programming; quadratic assignment problem; simulated annealing-type heuristic},
language = {eng},
number = {3},
pages = {249-273},
publisher = {EDP-Sciences},
title = {RedInv-SA : a simulated annealing for the quadratic assignment problem},
url = {http://eudml.org/doc/105191},
volume = {33},
year = {1999},
}

TY - JOUR
AU - de Abreu, N. M. M.
AU - Querido, T. M.
AU - Boaventura-Netto, P. O.
TI - RedInv-SA : a simulated annealing for the quadratic assignment problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 3
SP - 249
EP - 273
LA - eng
KW - meta-heuristics; combinatorial programming; quadratic assignment problem; simulated annealing-type heuristic
UR - http://eudml.org/doc/105191
ER -

References

top
  1. [Ab84] N. M. M. ABREU, An Algebraic and Combinatorial Study of the Quadratic Assignment Problem as Defined by Koopmans and Beckmann (in Portuguese), D.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, 1984. 
  2. [AB89] N. M. M. ABREU and P. O. BOAVENTURA-NETTO, The Quadratic Assignment Problem: Permutation Ordering and Inversions, AMSE Rev., 1989, 10, p. 21-52. 
  3. [AV95] N. M. M. ABREU and O. VERNET, Permutation Lattices and the Quadratic Assignment Problem, Tech. Rep. PEP/PO/8, COPPE/UFRJ, Rio de Janeiro, 1995. 
  4. [Be68] C. BERGE, Principes de Combinatoire, Dunod, Paris, 1968. Zbl0227.05001MR237346
  5. [Be73] C. BERGE, Graphes et Hypergraphes, 2e éd., Dunod, Paris, 1973. Zbl0213.25702MR357171
  6. [BR84] R. E. BURKARD and F. RENDL, A Thermodynamically Motivated Simulation Procedure for Combinatorial Optimization Problems, EJOR, 1984, 17, p. 169-174. Zbl0541.90070
  7. [BKR94] R. E. BURKARD, S. E. KARISCH and F. RENDL, QAPLIB - A Quadratic Assignment Problem Library, Rep. 287 CDLDO-41, Technische Universität, Graz, 1994. Zbl0729.90993
  8. [BM93] T. N. BUI and B. R. MOON, A Genetic Algorithm for a Special Class of the Quadratic Assignment Problem, P. M. Pardalos, H. Wolkowicz, Ed., Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0817.90053MR1290348
  9. [LPR94] Y. LI, P. PARDALOS and M. G. C. RESENDE, A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem, P. M. Pardalos, H. Wolkowicz, Ed., Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0817.90057MR1290356
  10. [BS78] R. E. BURKARD and R. H. STRATMAN, Numerical Investigations on Quadratic Assignment Problem, NRLQ, 1978, 25, p. 129-140. Zbl0391.90066
  11. [CB89] N. CHRISTOFIDES and E. BENAVENT, An Exact Algorithm for the Quadratic Assignment Problem on a Tree, Opns. Res., 1989, 37, p. 760-768. Zbl0682.90064MR1021417
  12. [Con89] D. CONNOLLY, Solution Techniques for the Quadratic Assignment Problem and the Development of a General Purpose Simulated Annealing Algorithm, Ph.D. Thesis, The London School of Economies and Political Science, London, 1989. 
  13. [Con90] D. CONNOLLY, An Improved Annealing Scheme for the QAP, EJOR, 1990, 46, p. 93-100. Zbl0715.90079MR1053816
  14. [CSK94] J. C CHAKRAPANI and J. SKORIN-KAPOV, A Constructive Method for Improving Lower Bounds for a Class of Quadratic Assignment Problems, Opns. Res., 1994, 42, p. 837-845. Zbl0815.90106MR1299493
  15. [Eg90] R. W. EGLESE, Simulated Annealing: a Tool for Operations Research, EJOR, 1990, 46, p. 271-281. Zbl0699.90080MR1064622
  16. [F190] M. M. FLOOD, Exact and Heuristic Algorithms for the Weighted Feedback Arc Set Problem: A Special Case of the Skew-Symrnetric Quadratic Assignment Problem, Networks, 1990, 20, p. 1-23. Zbl0691.90088MR1032172
  17. [FF94] C. FLEURENT and J. A. FERLAND, Genetic Hybrids for the Quadratic Assignment Problem, P. M. Pardalos, H. Wolkowicz, Ed., Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0817.90056MR1290352
  18. [GP66] J. W. GAVETT and N. V PLYTER, The Optimal Assignment of Facilities to Locations by Branch-and-Bound, Opns. Res., 1966, 14, p. 210-232. 
  19. [HLP52] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge University Press, Cambridge, 1934. Zbl0047.05302
  20. [KB57] T. C. KOOPMANS and M. BECKMANN, Assignment Problems and the Location of Economic Activities, Econometrica, 1957, 25, p. 53-76. Zbl0098.12203MR89106
  21. [LP92] Y. LI and P. M. PARDALOS, Generating Quadratic Assignment Test Problems with Known Optimal Permutations, Comput. Optim. Appl., 1992, 1, p. 163-184. Zbl0773.90083MR1226334
  22. [LPR94] Y. LI, P. M. PARDALOS and M. G. C. RESENDE, A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem, P. M. Pardalos, H.Wolkowicz, Ed., Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0817.90057MR1290356
  23. [MLP92] K. A. MURTHY, Y. LI and P. M. PARDALOS, A Local Search Algorithm for the Quadratic Assignment Problem, Informatica, 1992, 4, p. 524-538, 596, 604. Zbl0937.68511MR1243756
  24. [MM92] J. MILLIS and V. MAGIROU, A Lagrangean Relaxation Algorithm for the Task and the Quadratic Assignment Problems, Helln Res. In Maths. and Informat. '92, Helln. Math. Soc, Athens, 1992, p. 267-279. Zbl0816.90097MR1381239
  25. [MM95] J. MILLIS and V. MAGIROU, A Lagrangean Relaxation Algorithm for Sparse Quadratic Assignment Problems, Oper. Res. Lett., 1995, 17, p. 69-76. Zbl0836.90128MR1336783
  26. [MR94a] T. MAUTOR and C. ROUCAIROL, A New Exact Algorithm for the Solution of Quadratic Assignment Problems, Discr. Appl. Maths., 1994, 55, p. 281-293. Zbl0819.90054MR1308884
  27. [MR94b] T. MAUTOR and C. ROUCAIROL, Difficulties of Exact Methods for Solving the Quadratic Assignment Problem, P. M. Pardalos, H. Wolkowicz, Ed., Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0817.90058MR1290357
  28. [NVR68] C. E. NUGENT, T. E. VOLLMANN and J. RUML, An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Opns. Res. Qtrly., 1968, 16, p. 150-173. 
  29. [Pa88] G. S. PALUBETSKIS, A Generator of Quadratic Assignment Test Problems with a Known Optimal Solution, Zh. Vychisl. Mat. I Mat Fiz, 1988, 28, p. 1740-1743. Zbl0658.90076MR976831
  30. [PRRL97] P. PARDALOS, K. G. RAMAKRISHNAN, M. G. C. RESENDE and Y. LI, Implementation of a Variance Reduction-Based Lowed Bound in a Branch-and-Bound Algorithm for the Quadratic Assignment Problem, SIAM J. Optim., 1997, 7, p. 280-294. Zbl0873.90072MR1430568
  31. [PW94] P. M. PARDALOS and H. WOLKOWICZ, The Quadratic Assignment Problem: A Survey of Recent Developments, P. M.Pardalos, H.Wolkowicz, Ed., Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0817.90059MR1290345
  32. [PW94ed] P. M. PARDALOS and H. WOLKOWICZ, Quadratic Assignment and Related Problems, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 16, American Mathematical Society, Providence, 1994. Zbl0797.00027MR1290344
  33. [Que94] T. M. QUERIDO, Simulated Annealing in the Inversion Graph of the Quadratic Assignment Problem (in Portuguese), D. Sc. Thesis, COPPE/UFRJ, 1994. 
  34. [Re85] F. RENDL, Ranking Scalar Products to Improve Bounds for the Quadratic Assignment Problem, EJOR, 1985, 20, p. 363-372. Zbl0565.90055MR800911
  35. [Ro87] C. ROUCAIROL, A Parallel Branch-and-Bound Algorithm for the Quadratic Assignment Problem, Discr. Appl. Maths., 1987, 18, p. 211-225. Zbl0632.90047MR911298
  36. [RRP96] K. G. RAMAKRISHNAN, M. G. C. RESENDE and P. M. PARDALOS, A Branch-and-Bound Algorithm for the Quadratic Assignment Problem Using a Lower Bound on Linear Programming, Nonconvex Optim. Appl., 1996, 7, p. 57-73. Zbl0871.90071MR1390526
  37. [SK89] J. SKORIN-KAPOV, Tabu Search Applied to the Quadratic Assignment Problem, ORSA J. Comp., 1989, 2, p. 33-45. Zbl0752.90054
  38. [SK94] J. SKORIN-KAPOV, Extensions of a Tabu Search Adaptation to the Quadratic Assignment Problem, Comput Opns. Res., 1994, 21, p. 855-865. Zbl0812.90098MR1288637
  39. [Ta91] E. TAILLARD, Robust Taboo Search for the Quadratic Assignment Problem, Parallel Comput., 1991, 17, p. 443-455. MR1123015
  40. [Wh93] D. J. WHITE, A Parametric-Based Heuristic Program for the Quadratic Assignment Problem, NRL, 1993, 40, p. 553-568. Zbl0774.90058MR1214535
  41. [Wi58] R. J. WIMMERT, A Mathematical Model of Equipment Location, J.J.E, 1958, 9, p. 498-505. 
  42. [WW87] M. WILHELM and T. L. WARD, Solving Quadratic Assignment Problems by "Simulated Annealing", IEEE Trans., 1987, 19, p. 107-119. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.