Computation of the limiting distribution in queueing systems with repeated attempts and disasters

J. R. Artalejo; A. Gómez-Corral

RAIRO - Operations Research - Recherche Opérationnelle (1999)

  • Volume: 33, Issue: 3, page 371-382
  • ISSN: 0399-0559

How to cite

top

Artalejo, J. R., and Gómez-Corral, A.. "Computation of the limiting distribution in queueing systems with repeated attempts and disasters." RAIRO - Operations Research - Recherche Opérationnelle 33.3 (1999): 371-382. <http://eudml.org/doc/105196>.

@article{Artalejo1999,
author = {Artalejo, J. R., Gómez-Corral, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {-networks; single server queues; repeated attempts; disasters; stable recursion scheme; state probabilities},
language = {eng},
number = {3},
pages = {371-382},
publisher = {EDP-Sciences},
title = {Computation of the limiting distribution in queueing systems with repeated attempts and disasters},
url = {http://eudml.org/doc/105196},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Artalejo, J. R.
AU - Gómez-Corral, A.
TI - Computation of the limiting distribution in queueing systems with repeated attempts and disasters
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 3
SP - 371
EP - 382
LA - eng
KW - -networks; single server queues; repeated attempts; disasters; stable recursion scheme; state probabilities
UR - http://eudml.org/doc/105196
ER -

References

top
  1. 1. J. R. ARTALEJO, New results in retrial queueing Systems with breakdown of the servers, Statist. Neerlandica, 1994, 48, p. 23-36. Zbl0829.60087MR1267054
  2. 2. J. R. ARTALEJO and A. GOMEZ-CORRAL, Steady state solution of a single-server queue with linear request repeated, J. Appl. Probab., 1997 , 34, p. 223-233. Zbl0876.60082MR1429069
  3. 3. J. R. ARTALEJO and A. GOMEZ-CORRAL, Analysis of a stochastic clearing system with repeated attempts, Communications in Statistics-Stochastic Models, 1998, 14, p. 623-645. Zbl0913.60088MR1621354
  4. 4. R. J. BOUCHERIE and O. J. BOXMA, The workload in the M/G/1 queue with work removal, Probab. Engineering and Informational Sci., 1996, 10, p. 261-277. Zbl1095.60510MR1386640
  5. 5. X. CHAO, A queueing network model with catastrophes andproduct form solution, Operations Research Letters, 1995, 18, p. 75-79. Zbl0857.90042MR1361864
  6. 6. G.I. FALIN and J. G. C. TEMPLETON, Retrial Queues, Chapman and Hall, London, 1997. Zbl0944.60005
  7. 7. J. M. FOURNEAU, E. GELENBE and R. SUROS, G-Networks with multiple classes of positive and negative customers, Theoret. Comput. Sci., 1996, 155, p. 141-156. Zbl0873.68010MR1379069
  8. 8. E. GELENBE, P. GLYNN and K. SIGMAN, Queues with negative arrivals, J. Appl. Probab., 1991, 28, p. 245-250. Zbl0744.60110MR1090463
  9. 9. E. GELENBE, Queueing networks with negative and positive customers and product form solution, J. Appl. Probab., 1991, 28, p. 656-663. Zbl0741.60091MR1123837
  10. 10. E. GELENBE and M. SCHASSBERGER, Stability of product form G-Networks, Probab. Engineering and Informational Sci., 1992, 6, p. 271-276. Zbl1134.60396
  11. 11. E. GELENBE, G-Networks with triggered customer movement, J. Appl. Probab., 1993, 30, p. 742-748. Zbl0781.60088MR1232750
  12. 12. E. GELENBE, G-Networks with signals and batch removal, Probab. Engineering and Informational Sci., 1993, 7, p. 335-342. 
  13. 13. E. GELENBE and A. LABED, G-Networks with multiple classes of signals and positive customers, European J. Oper. Res., 1998, 108, p. 393-405 Zbl0954.90009
  14. 14. P. G. HARRISON and E. PITEL, The M/G/1 queue with negative customer, Adv. Appl.Probab., 1996, 28, p. 540-566. Zbl0861.60088MR1387890
  15. 15. G. JAIN and K. SIGMAN, A Pollaczek-Khintchine formula for M/G/1 queues with disasters, J. Appl. Probab., 1996, 33, p. 1191-1200. Zbl0867.60082MR1416237
  16. 16. A. G. DE KOK, Algorithmic methods for single server Systems with repeated attempts, Statist Neerlandica, 1984, 38, p. 23-32. Zbl0547.60098MR744988
  17. 17. M. MARTIN and J. R. ARTALEJO, Analysis of an M/G/1 queue with two types of impatient units, Adv, Appl. Probab., 1995, 27, p. 840-861. Zbl0829.60085MR1341888
  18. 18. H. SCHELLHAAS, Commutation of the state probabilities in a class of semi-regenerative queueing Models, J. Janssen, Ed., Semi-Markov Models: Theory and Applications Plenum Press, New York and London, 1986, p. 111-130. MR873987
  19. 19. R. SERFOZO and S. STIDHAM, Semi-stationary clearing processes, Stochastic Process. Appl., 1978, 6, p. 165-178. Zbl0372.60146MR478406
  20. 20. S. STIDHAM, Stochastic clearing Systems, Stochastic Process. Appl., 1974, 2, p.85-113. Zbl0281.60103MR368234
  21. 21. H. C. TIJMS, Stochastic Models: An Algorithmic Approach, John Wiley and Sons, Chichester, 1994. Zbl0838.60075MR1314821
  22. 22. T. YANG and J. G. C. TEMPLETON, A survey on retrial queues, Queueing Systems, 1987, 2, p. 201-233. Zbl0658.60124MR925180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.