A generalized proximal point algorithm for the nonlinear complementarity problem
Regina S. Burachik; Alfredo N. Iusem
RAIRO - Operations Research - Recherche Opérationnelle (1999)
- Volume: 33, Issue: 4, page 447-479
- ISSN: 0399-0559
Access Full Article
topHow to cite
topBurachik, Regina S., and Iusem, Alfredo N.. "A generalized proximal point algorithm for the nonlinear complementarity problem." RAIRO - Operations Research - Recherche Opérationnelle 33.4 (1999): 447-479. <http://eudml.org/doc/105200>.
@article{Burachik1999,
author = {Burachik, Regina S., Iusem, Alfredo N.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {nonlinear complementarity problem; proximal point methods; monotone operators},
language = {eng},
number = {4},
pages = {447-479},
publisher = {EDP-Sciences},
title = {A generalized proximal point algorithm for the nonlinear complementarity problem},
url = {http://eudml.org/doc/105200},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Burachik, Regina S.
AU - Iusem, Alfredo N.
TI - A generalized proximal point algorithm for the nonlinear complementarity problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4
SP - 447
EP - 479
LA - eng
KW - nonlinear complementarity problem; proximal point methods; monotone operators
UR - http://eudml.org/doc/105200
ER -
References
top- 1. A. AUSLENDER and M. HADDOU, An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming, 1995, 71, p. 77-100. Zbl0855.90095MR1362959
- 2. L. M. BREGMAN, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming, U.S.S.R. Comput. Math. and Math. Phys., 1967, 7, n° 3, p. 200-217. Zbl0186.23807MR215617
- 3. H. BREZIS, Opérateurs Monotones Maximaux et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam. Zbl0169.18701
- 4. H. BREZIS and A. HARAUX, Image d'une somme d'opérateurs monotones et applications, Israel J. Math., 1976, 23, n° 2, p. 165-186. Zbl0323.47041MR399965
- 5. F. E. BROWDER, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 1976, 18, n° 2. Zbl0327.47022MR405188
- 6. R. S. BURACHIK and A. N. IUSEM, A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim., 1998, 8, p. 197-216. Zbl0911.90273MR1617443
- 7. Y. CENSOR, A. N. IUSEM and S. A. ZENIOS, An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming, 1998, 81, p. 373-400. Zbl0919.90123MR1617732
- 8. I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 1967, 2, p. 299-318. Zbl0157.25802MR219345
- 9. P. T. HARKER and J. S. PANG, Finite dimensional variational inequalities and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programming, 1990, 48, p. 161-220. Zbl0734.90098MR1073707
- 10. A. N. IUSEM, B. F. SVAITER and M. TEBOULLE, Entropy-like proximal methods in convex programming, Math. Oper. Res., 1994, 19, p. 790-814. Zbl0821.90092MR1304625
- 11. A. N. IUSEM and M. TEBOULLE, Convergence rate analysis of nonquadratic proximal and augmented Lagrangian methods for convex and linear programming, Math. Oper. Res., 1995, 20, p. 657-677. Zbl0845.90099MR1354775
- 12. A. N. IUSEM, On some properties of paramonotone operators, J. Convex Analysis, 1998, 5, p. 269-278. Zbl0914.90216MR1670352
- 13. S. KARAMARDIAN, Complementarity problems over cones with monotone and pseudomonotone maps, J. Optim. Theory Appl., 1976, 18, p. 445-455. Zbl0304.49026MR472053
- 14. D. KINDERLEHRER and G. STAMPACCHIA, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
- 15. M. A. KRASNOSELSKII, Two observations about the method of successive approximations, Uspekhi Mat. Nauk, 1955, 10, p. 123-127. MR68119
- 16. B. LEMAIRE, The proximal algorithm, in International Series of Numerical Mathematics, J. P. Penot, Ed., Birkhauser, Basel, 1989, 87, p. 73-87. Zbl0692.90079
- 17. B. MARTINET, Régularisation d'inéquations variationelles par approximations succesives, Revue Française d'Informatique et Recherche Opérationnelle, 1970, 2, p. 154-159. Zbl0215.21103MR298899
- 18. B. MARTINET, Algorithmes pour la résolution de problèmes d'optimisation et minimax, Thèse d'État, Université de Grenoble, Grenoble, 1972.
- 19. Z. OPIAL, Weak convergence of the sequence of succesive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. (N.S.), 1967, 75, p. 591-597. Zbl0179.19902MR211301
- 20. D. PASCALI and S. SBURLAN, Nonlinear Mappings of Monotone Type, Editura Academiei, Bucarest, 1978. Zbl0423.47021MR531036
- 21. R. T. ROCKAFELLAR, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 1970, 149, p. 75-88. Zbl0222.47017MR282272
- 22. R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 1976, 14, p. 877-898. Zbl0358.90053MR410483
- 23. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, New Jersey, 1970. Zbl0932.90001MR274683
- 24. M. TEBOULLE, Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res., 1992, 17, p. 97-116. Zbl0766.90071MR1177730
- 25. M. TEBOULLE, Convergence of proximal-like algorithms, SIAM J. Optim., 1997, 7, p. 1069-1083. Zbl0890.90151MR1479615
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.